Skip to main content

Effect of Oil and Gas Saturation on Simulation of Temperature History and Maturation

  • Chapter

Part of the book series: Computer Applications in the Earth Sciences ((CAES))

Abstract

Calibration of thermal histories in basin modeling usually relies on matching temperature and vitrinite reflectance distribution in wells. The four main variables that can be adjusted to improve such a match are heat flow, surface temperature, maximum depth of burial (or eroded overburden), and thermal conductivity of the individual layers of rocks. This last parameter can be used to match the fine structure of the vertical temperature distribution, thermal gradient changes and heat anomalies.

Thermal conductivity values depend, among other variables, on the type of fluid filling the pores of the sediment. Although water usually is assumed as the pore fluid, we have experimented with using decreased conductivity resulting from high gas saturation in the pore space of specific formations in our modeling. One such case study is the Alberta Deep Basin in western Canada, where a large part of the lower Cretaceous section is thought to be gas saturated, underneath a water-saturated seal. Another case study comes from northwestern Siberia, where the largest gas accumulations on earth have been discovered.

Results show that the thermal effect of gas in pores, as opposed to water, is significant and cannot be neglected in basin modeling. Gas saturation can explain frequently observed sudden increases in vitrinite reflectance gradients or so-called “kinky” reflection profiles. The gas effect also can be used to model heat anomalies in past geologic periods where hypothetical increased heat-flow events cannot be justified.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berry, F. A. F., 1959, Hydrodynamics and geochemistry of the Jurassic and Cretaceous systems in the San Juan basin, northwestern New Mexico and southwestern Colorado: unpubl. doctoral dissertation, Stanford Univ., 466 p.

    Google Scholar 

  • Blackwell, D. D., and Steele, J. L., 1989, Thermal conductivity of sedimentary rocks: measurement and significance, in Naeser, N. D., and McCulloh, T. H., eds., Thermal History of Sedimentary Basins-Methods and Case Histories: Springer-Verlag, p. 14–36.

    Google Scholar 

  • Brigaud, F., Chapman, D. S., and Le Douaran, S., 1990, Estimating thermal conductivity in sedimentary basins using lithologic data and geophysical well logs: Am. Assoc. Petroleum Geologists Bull., v. 74, no. 9, p. 1459–1477.

    Google Scholar 

  • Clark, S. P.,Jr., ed., 1966, Handbook of physical constants: Geol. Soc. America Mem. 97, 587 p.

    Google Scholar 

  • Clauser, C., and Huenges, E., 1995, Thermal conductivity of rocks and minerals, in Ahrens, T. J., ed., Rock Physics and Phase Relations-A Handbook of Physical Constants: Reference Shelf, v. 3: Am. Geophys. Union, Washington, D.C., p. 105–126.

    Chapter  Google Scholar 

  • Gallant, R. W., 1968, Physical properties of hydrocarbons, v. 1: Gulf Publ. Co., Houston, TX, 223 p.

    Google Scholar 

  • Kappelmeyer, O., and Haenel, R., 1974, Geothermics with special reference to application: Gebrüder Bornträger, Berlin, 240 p.

    Google Scholar 

  • Krupiczka, R., 1967, Analysis of thermal conductivity in granular materials: Intern. Chem. Engineering, v. 7, no. l,p. 122–144.

    Google Scholar 

  • Law, B. E., Nuccio, V. F., and Barker, C. E., 1989, Kinky vitrinite reflectance well profiles: evidence of paleopore pressure in low-permeability, gas-bearing sequences in Rocky Mountain Foreland Basins: Am. Assoc. Petroleum Geologists Bull., v. 73, no. 8, p. 999–1010.

    Google Scholar 

  • Littke, R., Cramer, B., Gerling, P., Lopatin, N. V., Poelchau, H. S., Schaefer, R. G., and Weite, D. H., 1999, Gas generation and accumulation in the west Siberian Basin and the atmospheric methane balance: Am. Assoc. Petroleum Geologists Bull., submitted,.

    Google Scholar 

  • Luo, M, Wood, J. R., and Cathles, L. M., 1994, Prediction of thermal conductivity in reservoir rocks using fabric theory: Jour. Appl. Geophysics, v. 32, no. 4, p. 321–334.

    Article  Google Scholar 

  • Masters, J. A., 1979, Deep basin gas trap, western Canada: Am. Assoc. Petroleum Geologists Bull., v. 63, no. 2, p. 152–181.

    Google Scholar 

  • Masters, J. A., 1984, Lower Cretaceous oil and gas in Western Canada, in Masters, J. A., ed., Elmworth-case study of a Deep Basin gas field: Am. Assoc. Petroleum Geologists Mem. 38, p. 1–33.

    Google Scholar 

  • Midttomme, K., and Roaldset, E., 1998, The effect of grain size on thermal conductivity of quartz and silts: Petroleum Geoscience, v. 4, no. 2, p. 165–172.

    Article  Google Scholar 

  • Osadetz, K. G., 1989, Basin analysis applied to petroleum geology in Western Canada, in Ricketts, B. D., ed., Western Canada Sedimentary Basin. A Case History: Can. Soc. Petroleum Geologists, Calgary, p. 287–306.

    Google Scholar 

  • Palciauskas, V. V., 1986, Models for thermal conductivity and permeability in normally compacting basins, in Burrus, J., ed., Thermal Modeling in Sedimentary Basins: Ed. Technip, Paris, p. 323–336.

    Google Scholar 

  • Peterson, J. A., and Clarke, J. W., 1991, Geology and hydrocarbon habitat of the West Siberian Basin: Am. Assoc. Petroleum Geologists, Studies in Geology, v. 32, 96 p.

    Google Scholar 

  • Poelchau, H. S., Baker, D. R., Hantschel, T., Horsfield, B., and Wygrala, B., 1997, Basin simulation and the design of the conceptual basin model, in Weite, D. H., Horsfield, B., and Baker, D. R., eds., Petroleum and Basin Evolution: Springer-Verlag, Heidelberg, p. 5–70.

    Google Scholar 

  • Poelchau, H. S., and Zwach, C., 1994, Basin simulation and diagenetic models: Albian Cadotte Sandstone, Alberta Deep Basin, Canada: Berichte des Forschungszentrums Jülich, v. Jül-2882, p. B1.1–142.

    Google Scholar 

  • Reibelt, M., 1991, Untersuchung des Einflusses der Oberflächenbeschaffenheit und der Fluidsättigung von Gesteinen auf die Messung der Wärmeleitfähigkeit mit einer Halbraumlinienquelle: unpubl. Diplomarbeit, Techn. Univ. Berlin, Berlin, 111p.

    Google Scholar 

  • Robertson, E. C., 1979, Thermal conductivity of rocks: U.S. Geol. Survey Open-File Rept. 79-356, 31 p.

    Google Scholar 

  • Rovenskaya, A. S., and Nemchenko, N. N., 1992, Prediction of hydrocarbons in the West Siberian Basin: Bull. Cent. Rech. Explor. Prod. Elf Aquitaine, v. 16, p. 285–318.

    Google Scholar 

  • Siedler, G., and Peters, H., 1986, Properties of sea water, in Sündermann, J., ed., Oceanography}: Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology. New Series. Group 5: Geophysics and space research, v. 3: Springer, Berlin, p. 233–258.

    Google Scholar 

  • Silver, C., 1968, Principles of gas occurrence, San Juan basin, Natural Gases in North America. Pt. 2 Natural gases in rocks of Mesozoic age: Am. Assoc. Petroleum Geologists Mem. 9, p. 946–960.

    Google Scholar 

  • Somerton, W. H., 1992, Thermal properties and temperature-related behavior of rock/fluid systems: Developments in Petroleum Science, v. 37: Elsevier, Amsterdam, 260 p.

    Google Scholar 

  • Tikhomirov, V. M., 1968, Heat conductivity of rocks and their relationship with density, saturation and temperature: Neftyanoe Khozyaystvo, v. 46, no. 4, p. 36–40.

    Google Scholar 

  • Tödheide, K., Hensel, F., and Franck, E. U., 1968, Wärmeleitfähigkeit von Gasen, in Schäfer, K., ed., Transportphänomene II-Kinetik-Homogene Gasgleichgewichte: Landolt-Börnstein Zahlenwerte und Funktionen. II. Band: Eigenschaften der Materie in ihren Aggregatzuständen, v. 5b: Springer, Berlin, p. 39–71.

    Google Scholar 

  • Ungerer, P., Burras, J., Doligez, B., Chénet, P. Y., and Bessis, F., 1990, Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration: Am. Assoc. Petroleum Geologists Bull., v. 74, no. 3, p. 309–335.

    Google Scholar 

  • Weast, R. C., ed., 1974, CRC Handbook of chemistry and physics: CRC Press, Cleveland, Oh, variously paginated.

    Google Scholar 

  • Woodside, W., and Messmer, J. H., 1961a, Thermal conductivity of porous media. I. Unconsolidated sands: Jour. Applied Physics, v. 32, no. 9, p. 1688–1699.

    Article  Google Scholar 

  • Woodside, W., and Messmer, J. H., 1961b, Thermal conductivity of porous media. II. Consolidated rocks: Jour. Applied Physics, v. 32, no. 9, p. 1699–1706.

    Article  Google Scholar 

  • Wygrala, B. P., 1989, Integrated study of an oil field in the southern Po basin, northern Italy: unpubl. doctoral dissertation, Univ. Köln, Berichte Kernforschungsanlage Jülich, no. 2313, 217 p.

    Google Scholar 

  • Zimmerman, R. W., 1989, Thermal conductivity of fluid-saturated rocks: Jour. Petroleum Sci. & Eng., v. 3, no. 3, p. 219–227.

    Article  Google Scholar 

  • Zwach, C., 1995, Diagenesis and temperature history of the Cadotte Sandstone, Alberta Deep Basin, Canada: Integration of reservoir quality analysis and basin modeling: Berichte des Forschungszentrums Jülich Jül-3082, 173 p.

    Google Scholar 

  • Zwach, C., Poelchau, H. S., Hantschel, T., and Weite, D. H., 1994, Simulation with contrasting pore fluids: Can we afford to neglect hydrocarbon saturation in basin modeling?: Conf. on Basin Modelling, London, Geological Soc., Petroleum Group, p. 81–84.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poelchau, H.S., Zwach, C., Hantschel, T., Welte, D.H. (1999). Effect of Oil and Gas Saturation on Simulation of Temperature History and Maturation. In: Förster, A., Merriam, D.F. (eds) Geothermics in Basin Analysis. Computer Applications in the Earth Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4751-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4751-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7154-0

  • Online ISBN: 978-1-4615-4751-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics