Advertisement

MSA Monooxygenase

An Enzyme from Terrestrial and Marine Bacteria which Degrades the Natural Sulfonate Methanesulfonate
  • Wolfram Reichenbecher
  • Paolo De Marco
  • Julie Scanlan
  • Nardia Baxter
  • J. Colin Murrell

Abstract

Sulfonates are organosulfur compounds with sulfur in the oxidation state +5 generally linked to a terminal carbon atom (R-CH2-SO3H). Naturally occuring sulfonates are usually non-aromatic and include taurine (2-aminoethanesulfonate), which is found abundantly in mammals (Huxtable, 1992), isethionate (2-hydroxyethanesulfonate), which occurs in red algae (Holst, 1994), the squid axon (Koechlin, 1954) and in mammals as a result of taurine conversion, cysteate (DL-2-amino-3-sulfopropionate), which is derived from cysteine, the archaebacterial coenzyme M (2-mercaptoethanesulfonate), the membrane constituents sulfonolipids, and methanesulfonate, which is discussed below. Synthetic sulfonates commonly have an aromatic nucleus, for example in the linear alkylbenzene sulfonate surfactants (LAS) or the sulfonated dyestuffs (Kertesz et al. 1994). Some of the artificial buffers used in the laboratory are sulfonates like 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS), 4-(2-hydroxyethyl)piperazine-l-ethanesulfonic acid (HEPES) and 3-morpholinopropanesulfonic acid (MOPS).

Keywords

Dimethyl Sulfide Methane Sulfonic Acid Organosulfur Compound Methane Mono Oxygenase Paracoccus Denitrificans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S.C., Kelly, D.P., and J.C. Murrell (1991) Microbial degradation of methanesulfonic acid: a missing link in the biogeochemical sulfur cycle. Nature 350:627–6628.CrossRefGoogle Scholar
  2. Batie, C.J., LaHaie, E., and D.P. Ballou (1987) Purification and characterization of phthalate oxygenase and phthalate oxygenase reductase from Pseudomonas cepacia. J. Biol. Chem. 262:1510–1518.Google Scholar
  3. Byrne, A.M., Kukor, J.J., and R.H. Olsen (1995) Sequence-analysis of the gene cluster encoding toluene-3-monooxygenase from Pseudomonas picketti PK01. Gene 154:65–70CrossRefGoogle Scholar
  4. Charlson, R.J., Lovelock, J.E., Andrea, M.O., and S.G. Warren (1987) Oceanic phytoplankton, atmospheric sulphur cloud albedo and climate. Nature 326:655-ó61.CrossRefGoogle Scholar
  5. Chien, C.-C., Leadbetter, E.R., and W. Godchaux III (1995) Sulfonate-sulfur can be assimilated for fermentative growth. FEMS Microbiol. Letters 129:189–194.Google Scholar
  6. De Marco, P. (1996) Molecular biology and genetics of methanesulfonic acid-utilising bacteria. PhD Thesis, University of Warwick.Google Scholar
  7. Denger, K., Laue, H., and A.M Cook (1997) Anaerobic taurine oxidation: A novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology 143:1919–1924.CrossRefGoogle Scholar
  8. Haigler, B.E. and D.T. Gibson (1990) Purification and properties of NADH-FerredoxinNAPReductase, a component of naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 172:457–464.Google Scholar
  9. Higgins, T.P., Davey, M., Trickett, J., Kelly, D.P., and J.C. Murrell (1996) Metabolism of methanesulfonic acid involves a multicomponent monooxygenase enzyme. Microbiology 142:251–260.CrossRefGoogle Scholar
  10. Higgins, T.P., De Marco, P., and J.C. Murrell (1997) Purification and molecular characterization of the electron transfer protein of methanesulfonic acid monooxygenase. J. Bacteriol. 179:1974–1979.Google Scholar
  11. Holmes, A.J., Kelly, D.P., Baker, S.C., Thompson, A.S., De Marco, P., Kenna, E.M., and J.C. Murrell (1997) Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. Arch. Microbiol. 167:46–53.CrossRefGoogle Scholar
  12. Holst, P.B., Nielsen, S.E., Anthoni, U., Bisht, K.S., Christophersen, C., Gupta, S., Parmar, V.S., Nielsen, P.H., Sahoo, D.B., and A. Singh. (1994) Isethionate in certain red algae. J. Appl. Phycol. 6:443–446.CrossRefGoogle Scholar
  13. Huxtable, R.J. (1992) Physiological actions of taurine. Physiol. Rev. 72:101–163.Google Scholar
  14. Johnston, J.B., Murray, K., and R.B. Chain (1975) Microbial metabolism of aryl sulphonates. A reassessment of colorimetric methods for the determination of sulphite and their use in measuring desulphonation of aryl and alkylbenzene sulphonates. Antonie Leuweenhoek. 41:493–511.CrossRefGoogle Scholar
  15. Kelly, D.P., Malin, G., and A.P. Wood (1993) Microbial transformations and biogeochemical cycling of one-carbon substrates containing sulphur, nitrogen or halogens. In: Microbial growth on Cl compounds (Murrell, J.C. and D.P. Kelly eds.) pp 47–64. Intercept, Andover, UK.Google Scholar
  16. Kelly, D.P., Baker, S.C., Trickett, J., Davey, M., and J.C. Murrell (1994) Methanesulphonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology 140:1419–1426.CrossRefGoogle Scholar
  17. Kertesz, M.A., Cook, A.M., and T. Leisinger (1994) Microbial metabolism of sulfur-and phosphorus-containing xenobiotics. FEMS Microbiol. Reviews 15:195–215.Google Scholar
  18. Koechlin, B.A. (1954) The isolation and identification of the major anion fraction of the axoplasm of squid giant nerve fibers. Proc. Natl. Acal. Scie. USA 40:60–62.CrossRefGoogle Scholar
  19. Locher, H.H., Thurnheer, T., Leisinger, T., and A.M. Cook. (1989) 3-nitrobenzenesulfonate, 3-aminobenzenesulfonate, and 4-aminobenzenesulfonate as sole carbon-sources for bacteria. Appl. Environ. Microbiol. 55:492–494.Google Scholar
  20. Nordlund, P.H., Dalton, H., and E. Eklund (1992) The active site structure of methane monooxygenase is closely related to the binuclear iron center of ribinucleotide reductase. FEBS Lett. 307:257–262.CrossRefGoogle Scholar
  21. Saigne, C. and Legrand (1987) Measurements of methanesulphonic acid in Antarctic ice. Nature 330:240–242.CrossRefGoogle Scholar
  22. Seitz, A.P., Leadbetter, E.R., and W. Godchaux III (1993). Utilization of sulfonates as sole sulfur source by soil bacteria including Comamonas acidovorans Arch. Microbiol. 159:440–444.Google Scholar
  23. Thompson A.S., Owens, N.J.P., and J.C. Murrell (1995) Isolation and characterization of methanesulfonic acid-degrading bacteria from the marine environment. Appl. Environ. Microbiol. 61:2388–2393.Google Scholar
  24. Yen, K.-M., Karl, M.R., Blatt, L.M., Simon, M.J., Winter, R.B., Fausset, P.R., Lu, H.S., Harcourt, A.A., and K.K. Chen (1991) Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J. Bacteriol. 173:5315–5327.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Wolfram Reichenbecher
    • 1
  • Paolo De Marco
    • 2
  • Julie Scanlan
    • 1
  • Nardia Baxter
    • 1
  • J. Colin Murrell
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK
  2. 2.Department of MicrobiologyUniversity of PortoPortugal

Personalised recommendations