Advertisement

Biodegradation of Organic Pollution Involving Soil Iron(III) Solubilized by Bacterial Siderophores as an Electron Acceptor

Possibilities and Perspectives
  • Alexander A. Kamnev
  • Lyudmila P. Antonyuk
  • Vladimir V. Ignatov

Summary

Microbial degradation of organic matter, like any oxidation process, requires an oxidizing agent. The role of the latter may be played by oxygen (the most common electron acceptor). However, under microaerobic conditions (ground water, subsurface soil) the supply of oxygen is limited, which, in its turn, may limit the biodegradation rate. An alternative possibility is the use of other electron acceptors, among which iron(III) is generally abundant in soil, yet being poorly soluble at physiological pH values. In this case its bioavailability can be essentially increased, e.g. by adding a chelating agent: NTA, EDTA, etc.

It should be noted that such an externally introduced chelator would increase also the bioavailability of a number of heavy metals which might then be easily accumulated in plants or otherwise affect the biota, including possible suppression of biodegrading microorganisms. This drawback can be avoided by using bacterial siderophores which selectively solubilize iron(III) and can be used by dissimilatory iron(III)-reducing bacteria that couple iron(III) reduction to oxidative degradation of organics. In this chapter, the possibilities are discussed for applying bacterial siderophores, as well as iron(III)-solubilizing bacterial cultures both “compatible” with the bacteria-biodegraders in sharing the resulting iron(III) chelate and viable in the presence of the organic matter to be degraded, as well as other possible contaminants. Plant-associated bacteria of the genus Azospirillum seem to be beneficial for the above applications as co-inoculants in concert with bacteriabiodegraders.

Keywords

Humic Substance Electron Acceptor Organic Pollution Azospirillum Brasilense Electron Shuttle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T.A., and Coats, J.R. (eds.) (1994) Bioremediation through Rhizosphere Technology, ACS Symposium Series 563, American Chemical Society, Washington, D.C. 249 pp.Google Scholar
  2. Bacchawat, A.K., and Ghosh, S. (1987) Iron transport in Azospirillum brasilense: role of siderophore spirilobactin. J. Gen. Microbiol. 133:1759–1765.Google Scholar
  3. Barkovskii, A.L., Bouillant, M.-L., and Balandreau, J. (1994) Polyphenolic compounds respired by bacteria, p. 2842. In T.A. Anderson and J.R. Coats (eds.), Bioremediation through Rhizosphere Technology, ACS Symposium Series 563, American Chemical Society, Washington, D.C.Google Scholar
  4. Barkovskii, A.L., Bouillant, M.-L., Monrozier, L.J., and Balandreau, J. (1995-a) Azospirillum strains use phenolic compounds as intermediates for electron transfer under oxygen-limiting conditions. Microb. Ecol. 29:99–114.Google Scholar
  5. Barkovskii, A.L., Korshunova, V.E., and Pozdnyacova, L.I. (1995-b) Catabolism of phenol and benzoate by Azospirillum strains. Appl. Soil Ecol. 2:17–24.CrossRefGoogle Scholar
  6. Bashan, Y., Holguin, G. (1997) Azospirillum-plant relationships - environmental and physiological advances (1990–1996). Can. J. Microbiol. 43(2):103–121.CrossRefGoogle Scholar
  7. Bashan, Y., and Levanony, H. (1987) Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field experiments. J. Gen. Microbiol. 133:3473–3480.Google Scholar
  8. Biro, B., Bayoumi Hamuda, H.E.A.F., and Kecskes, M. (1995) Associative, symbiotic N2-fixers and scavenger strains, affected by Cue’ and Znz’ in vitro, p. 495–500. In I. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.Google Scholar
  9. Bradley, P., and Chapelle, F.H. (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing aquifer systems. Environ. Sci. Technol. 30:2084–2086.CrossRefGoogle Scholar
  10. Braun, V. (1997) Avoidance of iron toxiCity through regulation of bacterial iron transport. Biol. Chem. 378:779–786.Google Scholar
  11. Briat, J.-F. (1992) Iron assimilation and storage in prokaryotes. J. Gen. Microbiol. 138:2475–2483.CrossRefGoogle Scholar
  12. Caccavo, F., Jr., Schamberger, P.C., Keiding, K., and Nielsen, P.H. (1997) Role of hydrophobiCity in adhesion of the dissimilatory Fe(IIl)-reducing bacterium Shewanella alga to amorphous Fe(III) oxide. Appl. Envir. Microbiol. 63:3837–3843.Google Scholar
  13. Costacurta, A., and Vanderleyden, J. (1995) Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21:1–18.Google Scholar
  14. Daun, G., Lenke, H., Desiere, F., Stolpmann, H., Warrelmann, J., Reuss, M., and Knackmuss, H.-J. (1995) Biological treatment of TNT-contaminated soil by a two-stage anaerobic/aerobic process, p. 337–346. In W.J. van den Brink, R. Bosman, and F. Arendt (eds.), Contaminated Soil’95, Kluwer, Dordrecht.Google Scholar
  15. Deng, Y. (1997) Formation of iron(1l1) hydroxides from homogeneous solutions. Water Res. 31:1347–1354.CrossRefGoogle Scholar
  16. Dobereiner, J., and Pedrosa, F. (1987) Nitrogen-fixing Bacteria in Nonleguminous Crop Plants. Springer, Berlin. Emery, J. (1980) Iron deprivation as a biological defence mechanism. Nature (London) 287:537.Google Scholar
  17. Fendrik, I., del Gallo, M., Vanderleyden, J., and de Zamaroczy, M. (eds.) (1995) Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.CrossRefGoogle Scholar
  18. Glass, B.L. (1972) Relation between the degradation of DDT and the iron redox system in soils. J. Agric. Food Chem. 20:324–327.CrossRefGoogle Scholar
  19. Golovlyova, L.A. (1992) Microbial methods for decontamination of soil and ground water. Biotekhnologiya (No. 5):60–64.Google Scholar
  20. Gondola, I., and Kadar, L. (1994, Pub. 1995) Heavy metal content of flue-cured tobacco leaf in different growing regions of Hungary. Acta Agron. Hung. 43(3–4):243–251.Google Scholar
  21. Gorby, Y., Kennedy, D., and Workman, D. (1996) Reductive dechlorination of carbon tetrachloride by biogenic ferrous iron, p. 107. In 1996 International Symposium on Subsurface Microbiology, 15–21 September 1996, Davos, Switzerland.Google Scholar
  22. Gowri, P.M., and Srivastava, S. (1996-a) Zinc resistance in Azospirillum brasilense Sp7 and its applications, p. 135–143. In M. Moo-Young, W.A. Anderson, and A.M. Chakrabarty (eds.), Environmental Biotechnology, Kluwer, Dordrecht.Google Scholar
  23. Gowri, P.M., and Srivastava, S. (1996-b) Reduced uptake based zinc resistance in Azospirillum brasilense Sp7. Curr. Sci. 71:139–142.Google Scholar
  24. Heijman, C., Grieder, E., Holliger, C., and Schwarzenbach, R.P. (1995) Abiotic reduction of nitroaromatic corn-pounds coupled to microbial iron reduction in laboratory aquifer columns. Environ. Sci. Technol. 29:775–783.CrossRefGoogle Scholar
  25. Holliger, C., Gaspard, S., Glod, G., Heijman, C., Schumacher, W., Schwarzenbach, R.P., and Vazquez, F. (1997) Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol. Rev. 20:517–523.CrossRefGoogle Scholar
  26. losipenko, A., and Ignatov, V. (1995) Physiological aspects of phytohormone production by Azospirillum brasilense Sp7, p. 307–312. In L. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.CrossRefGoogle Scholar
  27. Ismailov, N.M. (1988) Microbiology and enzymatic activity of oil-contaminated soils, p. 42–56. In M.A. Gla-zovskaya (ed.), Rehabilitation of oil-contaminated soil ecosystems, Nauka, Moscow (in Russian).Google Scholar
  28. Kamnev, A.A. (1998) On the possibility of reductive solubilization of iron(III) by some plant and microbial meta-bolites as an alternative to siderophore secretion. Dokl. Akad. Nauk (Moscow) 359 (No. 5): in press.Google Scholar
  29. Kamnev, A.A., and Kuzmann, E. (1997-a) Some rhizobacterial metabolites of non-siderophore nature as possible solubilizing agents for soil ferric species, p. 85–86. In P. Carmona, R. Navarro and A. Hernanz (eds.), Spectroscopy of Biological Molecules: Modern Trends. Annex, UNED, Madrid.Google Scholar
  30. Kireeva, N.A. (1994) Microbiological Processes in Oil Contaminated Soils, Bashkir State University Press, Ufa, 171 pp. (in Russian).Google Scholar
  31. Kireeva, N.A., Novoselova, E.I., and Khaziev, F.Kh. (1997) Enzymes of nitrogen metabolism in soil polluted with oil. Izv. Ross. Akad. Nauk. Ser. biol. (No. 6):755–759.Google Scholar
  32. Klausen, J., Tröber, S.P., Haderlein, S.B., and Schwarzenbach, R.P. (1995) Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Environ. Sci. Technol. 29:2396–2404.CrossRefGoogle Scholar
  33. Kloepper, J.W., Leong, J., Teintze, M., and Schroth, M.N. (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature (London) 286:885–886.CrossRefGoogle Scholar
  34. Lenke, H., Warrelmann, J., Daun, G., Walter, U., Sieglen, U., and Knackmuss, H.-J. (1997) Bioremediation of TNT-contaminated soils, p. 15. In T. Münker (ed.), International Society for Environmental Biotechnology ISEB’97 Meeting on Bioremediation, 24–27 September 1997, Leipzig, Germany. Abstracts, UFZ Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig.Google Scholar
  35. Lindsay, W.L., and Schwab, A.P. (1982) The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 5:821–840.CrossRefGoogle Scholar
  36. Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55:259–287.Google Scholar
  37. Lovley, D.R. (1997) Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol. Rev. 20:305–313.CrossRefGoogle Scholar
  38. Lovley, D.R., and Coates, J.D. (1997) Bioremediation of metal contamination. Curr. Opinion Biotechnol. 8:285289.Google Scholar
  39. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C. (1996) Humic substances as electron acceptors for microbial respiration. Nature (London) 382:445–448.CrossRefGoogle Scholar
  40. Lovley, D.R., and Phillips, E.J.P. (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54:1472–1480.Google Scholar
  41. Lovley, D.R., and Woodward, J.C. (1996) Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction. Chem. Geol. 132:19–24.CrossRefGoogle Scholar
  42. Lovley, D.R., Woodward, J.C., and Chapelle, F.H. (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(Ill) ligands. Nature (London) 370:128–131.CrossRefGoogle Scholar
  43. Lur’e, Yu.Yu. (1989) Handbook of Analytical Chemistry, 6th edn., Khimiya Publishers, Moscow (in Russian).Google Scholar
  44. Magalhaes, F.M.S., Baldani, J.I., Souto, S.M.. Kuykendall, J.R., and Dobereiner, J. (1983) A new acid tolerant Azospirillum species. Ann. Acad. Bras. Sci. 55:417–430.Google Scholar
  45. Malakul, P., Brouhard, G., Srinivasan, K., and Wang, H.Y. (1997) Metal toxiCity reduction in PAH biodegradation using metal chelating adsorbents, p. 145. In T. Münker (ed.), International Society for Environmental Biotechnology ISEB’97 Meeting on Bioremediation, 24–27 September 1997, Leipzig, Germany. Abstracts, UFZ Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig.Google Scholar
  46. Mori, E., Fani, R., and Fulchieri, M. (1995) Involvement of Ion protease of Azospirillum brasilense in iron uptake, p. 137–141. In L. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.Google Scholar
  47. Munch, J.C., and Ottow, J.C.G. (1983) Reductive transformation mechanism of ferric oxides in hydromorphic soils. Environ. Biogeochem. Ecol. Bull. (Stockholm) 35:383–394.Google Scholar
  48. Okon, Y. (ed.) (1994) Azospirillum/Plant Associations, CRC Press, Boca Raton.Google Scholar
  49. Panchenko, L.V., and Turkovskaya, O.V. (1996) Surfactant waste water treatment in the presence of accompanying pollutants, p. 359. In K.G. Skryabin (ed.), Bayev Memorial Conference, May 20–22, 1996. Abstracts, “Bioengineering” Centre, Russian Academy of Sciences, Moscow.Google Scholar
  50. Polyanskaya, L.M., Golovchenko, A.V., and Zvyagintsev, D.G. (1995) Microbial biomass in soils. Dokl. Akad. Nauk (Moscow) 344:846–848.Google Scholar
  51. Prikryl, Z., Vancura, V., and Wurst, M. (1985) Auxin formation by rhizospheric bacteria as a factor of root growth. Biol. Plant. 27:159–163.CrossRefGoogle Scholar
  52. Razo-Flores, E., Donlon, B., Lettinga, G., and Field, J.A. (1997) Biotransformation and biodegradation of N-substituted aromatics in methanogenic granular sludge. FEMS Microbiol. Rev. 20:525–538.CrossRefGoogle Scholar
  53. Ruppel, S., and Merbach, W. (1997) Effect of ammonium and nitrate on ‘N,-fixation of Azospirillum spp. and Pantoea agglomerans in association with wheat plants. Microbiol. Res. 152:377–383.CrossRefGoogle Scholar
  54. Russel, S., and Muszynski, S. (1995) Reduction of4-chloronitrobenzene by Azospirillum lipolerum, p. 369–375. In I. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.Google Scholar
  55. Sigel, A., and Sigel, H., eds. (1998) Metal Ions in Biological Systems. Vol. 35. Iron Transport and Storage in Microorganisms, Plants, and Animals, Marcel Dekker, New York. 824 pp.Google Scholar
  56. Trepte, B. (1997) Fe(II1) ligands as oxidants to enhance bioremediation, p. 139. In T. Münker (ed.), International Society for Environmental Biotechnology ISEB’97 Meeting on Bioremediation, 24–27 September 1997,Leipzig, Germany. Abstracts, UFZ Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig.Google Scholar
  57. Umarov, M.M. (1986) Associative Nitrogen Fixation, Moscow University Press, Moscow (in Russian).Google Scholar
  58. Vel’kov, V.V. (1995) Bioremediation: principles, problems, approaches. Biotekhnologiya (No. 3–4):20–27.Google Scholar
  59. White, C., Sayer, J.A., and Gadd, G.M. (1997) Microbial solubilization and immobilization of toxic metals: key biogeochemical processes for treatment of contamination. FEMS Microbiol. Rev. 20:503–516.CrossRefGoogle Scholar
  60. Zhulin, I.B., Bespalov, V.A., Johnson, M.S., and Taylor, B.L. (1996) Oxygen taxis and proton motive force in Azospirillum brasilense. J. Bacteriol. 178:5199–5204.Google Scholar
  61. Zhulin, I.B., and Taylor, B.L. (1995) Chemotaxis in plant-associated bacteria: the search for the ecological niche, p. 451–459. In L. Fendrik, M. del Gallo, J. Vanderleyden, and M. de Zamaroczy (eds.), Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology, Springer, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Alexander A. Kamnev
    • 1
  • Lyudmila P. Antonyuk
    • 1
  • Vladimir V. Ignatov
    • 1
    • 2
  1. 1.Physiology of Plants and Microorganisms Russian Academy of SciencesLaboratory of Biochemistry Institute of BiochemistrySaratovRussia
  2. 2.Department of Biochemistry and BiophysicsFaculty of Biology Saratov State UniversitySaratovRussia

Personalised recommendations