Ferredoxin-Mediated Reactivation of Catechol Dioxygenase Improves Aromatic Ring Cleavage in Pseudomonads

  • Y. Jouanneau
  • J. Armengaud
  • N. Hugo
  • C. Meyer
  • K. N. Timmis

Abstract

Cleavage of the aromatic ring is a critical step in the biodegradation of aromatic hydrocarbons and is generally catalyzed by dioxygenases. These enzymes incorporate each atom of molecular oxygen in diol substrates carrying two hydroxyl groups on two adjacent carbons of the aromatic ring, and eventually cause the opening of the ring. They are classified in two families depending on the mode of scission of the aromatic substrates. Intradiol dioxygenases cleave the aromatic ring between the two hydroxyls groups, whereas extradiol enzymes cleave the ring in a position adjacent to the diol. The two groups of enzyrnes share no amino acid sequence similarities, and are also structurally distinct in that the former contain a non-heme ferric ion at the catalytic site, and the latter contain a ferrous ion (Harayama and Rekik, 1989). The catechol 2,3-dioxygenase (XylE) of the TOL pathway in Pseudomonas putida mt2 is a typical extradiol dioxygenase which utilizes catechol and methyl-substituted catechols as substrates. Like many extradiol dioxygenases, it is a rather labile enzyme which tends to inactivate during catalytic turnover, or upon exposure to air oxygen. Inactivation is caused by oxidation of the ferrous iron atom at the enzyme active site. In the presence of certain substrates such as 4-methylcatechol and chlorocatechols, the enzyme rapidly loses activity (Bartels et al., 1984; Cerdan et al., 1995).

Keywords

Phenol Cysteine Lysine Arginine Biodegradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartels, I., Knackmuss, H. J., and Reineke, W. (1984). Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-Halocatechols. Appl. Environ. Microbiol. 47, 500–505.Google Scholar
  2. Cerdan, P., Rekik, M., and Harayama, S. (1995). Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida. Eur. J. Biochem. 229, 113–118.CrossRefGoogle Scholar
  3. Cerdan, P., Wasserfallen, A., Rekik, M., Timmis, K. N., and Harayama, S. (1994). Substrate specificity of catechol 2,3-dioxygenase encoded by TOL plasmid pWWO of Pseudomonas putida and its relationship to cell growth. J. Bacteriol. 176, 6074–6081.Google Scholar
  4. Harayama, S., Polissi, A., and Rekik, M. (1991). Divergent evolution of chloroplast-type ferredoxins. FEBS Lett. 285, 85–88.CrossRefGoogle Scholar
  5. Harayama, S., and Rekik, M. (1989). Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J. Biol. Chem. 264, 15326–15333.Google Scholar
  6. Herrmann, H., Muller, C., Schmidt, I., Mahnke, J., Petruschka, L., and Hahnke, K. (1995). Localization and or-ganization of phenol degradation genes of Pseudomonas putida strain H. Mol Gen Genet 247, 240–246.CrossRefGoogle Scholar
  7. Hugo, N., Armengaud, J., Gaillard, J., Timmis, K. N., and Jouanneau, Y. (1998). A Novel [2Fe-2S] Ferredoxin from Pseudomonas putida mt2 Promotes the Reductive Reactivation of Catechol 2,3-Dioxygenase. J Biol Chem 273, 9622–9629.CrossRefGoogle Scholar
  8. Kukor, J. J., and Olsen, R. H. (1996). Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl. Environ. Microbiol. 62, 1728–1740.Google Scholar
  9. Lee, J., Min, K. R., Kim, Y. C., Kim, C. K., Lim, J. Y., Yoon, H., Min, K. H., Lee, K. S., and Kim, Y. (1995). Cloning of salicylate hydroxylase gene and catechol 2,3-dioxygenase gene and sequencing of an intergenic sequence between the two genes of Pseudomonas putida KF715. Biochem Biophys Res Commun 211, 382–388.CrossRefGoogle Scholar
  10. Ng, L.C., Shingler, V., Sze, C. C., and Poh, C. L. (1994). Cloning and sequences of the first eight genes of the chromosomally encoded (methyl)phenol degradation pathway from Pseudomonas putida P35X. Gene 151, 29–36.CrossRefGoogle Scholar
  11. Parales, R. E., Ontl, T. A., and Gibson, D. T. (1997). Cloning and sequence analysis ofa catechol 2,3-dioxygenase gene from the nitrobenzene-degrading strain Comamonas sp JS765. J Ind Microbiol Biotechnol 19, 385–391.CrossRefGoogle Scholar
  12. Polissi, A., and Harayama, S. (1993). In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplasttype ferredoxin: a bacterial strategy to expand the substrate specificity of aromatic degradative pathways. EMBO J. 12, 3339–3347.Google Scholar
  13. Shingler, V., Powlowski, J., and Marklund, U. (1992). Nucleotide sequence and functionnal analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174, 711–724.Google Scholar
  14. Takeo, M., Fujii, T., Takenaka, K., and Maeda, Y. (1998). Cloning and sequencing ofa gene cluster for the meta-cleavage pathway of the aniline degradation in Acinetobacter sp. strain YAA. J. Ferment. Bioeng., in press.Google Scholar
  15. Tsukihara, T., Fukuyama, K., Mizushima, M., Harioka, T., Kusunoki, M., Katsube, Y., Hase, T., and Matsubara, H. (1990). Structure of the [2Fe-2S] Ferredoxin I from the blue-green Alga Aphanothece sacrum at 2.2 A resolution. J. Mol. Biol. 216, 399–410.CrossRefGoogle Scholar
  16. You, I. S., Ghosa, D., and Gunsalus, I. C. (1991). Nucleotide sequence analysis of the Pseudomonas putida PpG7 salicylate hydrolase gene (nahG) and its 3’-flanking region. Biochemistry 30, 1635–1641.CrossRefGoogle Scholar
  17. Zylstra, G. J., and Kim, E. (1997). Aromatic hydrocarbon degradation by Sphingomonas yanoikuvae BI. J. Ind. Microbiol. Biotechnol, 19, 408–414.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Y. Jouanneau
    • 1
  • J. Armengaud
    • 2
  • N. Hugo
    • 1
  • C. Meyer
    • 1
  • K. N. Timmis
    • 2
  1. 1.CEA-Grenoble et CNRS UMR 314DBMS/BBSIGrenobleFrance
  2. 2.Division of MicrobiologyGBFBraunschweigGermany

Personalised recommendations