Biocontrol — Plant Growth Promoting Rhizobacteria: Mechanism of Action

  • K. V. B. R. Tilak
  • Geeta Singh
  • K. G. Mukerji


Phytopathogens adversely affect crop production and account for 25–100% yield reduction (Glick and Bashan, 1997). Among the various methods available to control phytopathogens, environment friendly biological approaches includes the use of biocontrol PGPB (Dowling and O’Gara, 1994; Elsherif and Grossmann, 1994).


Fusarium Wilt Systemic Resistance Pseudomonas Putida Pseudomonas Fluorescens Plant Pathol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, F.B., Bosshart, R.P., Forrence, L.E. and Habig, W.H. 1971, Preparation and purification of glucanase and chitinase from bean leaves, Plant Physiol. 47:129–134.PubMedCrossRefGoogle Scholar
  2. Abeles, F.B., Morgan, P.W. and Saltveit, M.E. Jr. 1992, Regulation of ethylene production by internal, environmental and stress factors, in: Ethylene in Plant Biology, II ed., Academic Press, pp.56–119.Google Scholar
  3. Ahl, P., Voisard, C. and Defago, G. 1986, Iron bound-siderophores, cyanic acid and antibiotic involved in suppression of Thielaviopsis basicola by a Pseudomonas fluorescens strain, J. Phytopathol. 116:121–134.CrossRefGoogle Scholar
  4. Albert, F. and Anderson, A.J. 1987, The effect of Pseudomonas putida colonization on root surface peroxidase, Plant Physiol. 85:537–541.PubMedCrossRefGoogle Scholar
  5. Alstrom, S. 1991, Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere Pseudomonads, J. Gen. Appl. Microbiol. 37:495–501.CrossRefGoogle Scholar
  6. Anderson, A.J. and Jasalavich, C. 1979, Agglutination of Pseudomonad cells by plant products, Physiol. Plant Pathol. 15:149–159.CrossRefGoogle Scholar
  7. Anderson, A.J. 1983, Isolation from root and shoot surfaces of agglutinins that show specificity for saprophytic Pseudomonads, Can. J. Bot. 61:3438–3443.CrossRefGoogle Scholar
  8. Anderson, A.J. and Guerra, D. 1985, Response of bean to root colonization with Pseudomonas putida in a hydroponic system, Phytopathol. 75:992–995.CrossRefGoogle Scholar
  9. Anderson, A.J., Habibzadegah, Tari, P. and Tepper, C.S. 1988, Molecular studies on the role of a root surface agglutinili in adherros and colonization by Pseudomons putida, Appl. Environ. Microbiol. 54: 375–380.PubMedGoogle Scholar
  10. Arima, K., Imanaka, H., Kousaka, M., Fukuda, A. and Tamura, G. 1964, Pyrrol-nitrin a new antibiotic substance produced by Pseudomonas, Agr. Biol. Chem. 28: 575–576.CrossRefGoogle Scholar
  11. Azegami, K., Nishiyama, K. and Koto, H. 1988, Effect of iron limitation on Pseudomonas plantarii growth and tropolone and protein production, Appl. Environ. Microbiol. 54:844–847.PubMedGoogle Scholar
  12. Baker, K.F. 1987, Evolving concepts of biological control of plant pathogens, Ann. Rev. Phytopathology 26:67–85.CrossRefGoogle Scholar
  13. Bakker, P.A.H.M., Lamers, J.G., Bakker, A.N., Marugg, J.D., Weisbeek, P.T. and Schippers, B. 1986, The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato, Neth. J. Plant Pathol. 92:249–256.CrossRefGoogle Scholar
  14. Bakker, A.W. and Schipper, B. 1987, Cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp., Soil Biol. Biochem. 19:451–457.CrossRefGoogle Scholar
  15. Bangera, M.G. and Thomashow, L.S. 1996, Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological agent Pseudomonas fluorescens Q2-87, Mol. Plant-Microbe Interact. 9:83–90.PubMedCrossRefGoogle Scholar
  16. Bar-Ness, E., Chen, Y., Hadar, Y., Marschner, H. and Romheld, V. 1991, Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants, in: Iron Nutrition and Interactions in Plants, Y. Chen and Y. Hada, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp.271–281.CrossRefGoogle Scholar
  17. Bar-Ness, E., Hadar, Y., Shanzer, A. and Libman, J. 1992, Iron uptake by plants from microbial siderophores, A study with 7-nitrobenz-2 oxa-l,3-diazole-des-ferrioxamine as fluorescent ferrioxamine B analog, Plant Physiol. 99:1329–1335.PubMedCrossRefGoogle Scholar
  18. Bell, A.A. and Wheeler, M.H. 1986, Biosynthesis and functions of melanins, Ann. Rev. Phytopathol 24:411–451.CrossRefGoogle Scholar
  19. Bleeker, A.B., Estelle, M.A., Somerville, C., Kende, H. 1988, Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana, Science 241:1086–89.CrossRefGoogle Scholar
  20. Boiler, T. 1990, Ethylene and plant-pathogen interactions, Curr. Top. Plant Physiol. 5:138–145.Google Scholar
  21. Bonsall, R.F., Weller, D.M.and Thomashow, L.S. 1997, Quantification of 2,4-Diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat, Appl. Environ. Microbiol. 63:951–955.PubMedGoogle Scholar
  22. Boronin, A.M., Movrodi, D.V., Ksenzenko, V.N., Cook, R.J. and Thomashow, L.C. 1995, Characterization of genes involved in phenazine biosynthesis in plant-growth promoting Pseudomonas fluorescens 2-70, in: 5th International Symposium on Pseudomonas (Abstr.), Mo. Biol. and Biotech.Google Scholar
  23. Briat, J.F. 1992, Iron assimilation and storage in Prokaryotes, J. Gen. Microbiol. 138:2475–2483.PubMedCrossRefGoogle Scholar
  24. Brisbane, P.G. and Rovira, A.D. 1988, Mechanisms of inhibition of Gaeumannomyces graminis var. tritici by fluorescent pseudomonads, Plant Pathol. 37:104–111.CrossRefGoogle Scholar
  25. Broek, A.Y and Vanderleyden, J. 1995, The role of bacterial motility, chemotaxis and attachment in bacteria plant interactions, Mol. Plant-Microbe Interact. 8:800–810.CrossRefGoogle Scholar
  26. Buell, C.R. and Anderson, A.J. 1992, Genetic analysis of the agg A locus involved in agglutination and adherence of Pseudomonas putida, a beneficial fluorescent Pseudomonad, Mol. Plant-Microbe Interact. 5:154–162.PubMedCrossRefGoogle Scholar
  27. Buell, C.R. and Anderson, A.J. 1993, Expression of aggA locus of Pseudomonas putida in vitro and inplanta as reported by the reporter gene, xyl E, Mol. Plant-Microbe Interact. 6:331–340.PubMedCrossRefGoogle Scholar
  28. Buell, C.R., Whetton, R., Tari, P. and Anderson, A.J. 1993, Characterization of cell surface properties in agglutinable and non agglutinale mutants of Pseudomonas putida, Can. J. Microbiol. 39: 787–794.PubMedCrossRefGoogle Scholar
  29. Bull, C.T., Weller, D.M. and Thomashow, L.S. 1991, Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2–79, Phytopathology 81:954–959.CrossRefGoogle Scholar
  30. Buyer, J.S., Kratzke, M.G. and Sikora, L.J. 1993, A method for the detection of pseudobactin, the siderophore produced by a plant growth promoting Pseudomonas strain, in the barley rhizosphere, Appl. Environ. Microbiol. 59:677–681.PubMedGoogle Scholar
  31. Buysens, S., Poppe, J. and Hofte, M. 1994, Role of siderophores in plant growth stimulation and antagonism by Pseudomonas aeruginosa 7NSK2, in: Iimproving Plant Productivity with Rhizosphere Bacteria, M.H. Ryder, P.M. Stephens and G.D. Bowon, eds., CSIRO Adelaide pp:139–141.Google Scholar
  32. Cangelosi, G.A., Hung, L., Puvanesarajah, V., Stacey, G., Ozaga, D.A., Leigh, J.A. and Nester, E.W. 1987, Common loci for Agrobacterium tumefaciens and Rhizobium meliloti exopolysaccharides synthesis and their role in plant interactions, J. Bacteriol. 169:2086–2091.PubMedGoogle Scholar
  33. Capper, A.L. and Higgins, K.P. 1993, Application of Pseudomonas fluorescens isolates to wheat as potential biological control agents against take all, Plant Pathol. 42: 560–570.CrossRefGoogle Scholar
  34. Carni, R., Carmeli, S., Levy, E. and Gough, F.J. 1994, (+) — (S) — Dihydroaeruginoic acid, an inhibitor of Septoria tritici and other phytopathogenic fungi and bacteria, produced by Pseudomonas fluorescens, J.Nat. Prod. 57:1200–1205.CrossRefGoogle Scholar
  35. Carruthers, F.L., Conner, A.J. and Mahanthy, H.K. 1994, Identification of a genetic locus in Pseudomonas aureofaciens involved in fungal inhibition, Appl. Environ. Microbiol. 60:71–77.PubMedGoogle Scholar
  36. Castignetti, O. and Smarrelli, J. Jr. 1986, Siderophores the iron nutrition of plants and nitrate reductase, FEBS Lett. 209:147–151.CrossRefGoogle Scholar
  37. Cactric, P. 1977, Glycine metabolism by Pseudomonas aeruginosa: Hydrogen cyanide biosynthesis, J. Bacteriol. 130:826–831.Google Scholar
  38. Chang, C., Kwok, S.F., Blucker, A.B. and Meyerowitz, E.M. 1993, Arabidopsis ethylene — response gene ETR-1 similarity of product to two-component regulators, Science 262:539–544.PubMedCrossRefGoogle Scholar
  39. Chet, I. and Inbar, J. 1994, Biological control of fungal pathogens, Appl. Biochem. Biotechnol. 48:37–43.PubMedCrossRefGoogle Scholar
  40. Cook, R.J., Weiler, D.M. and Bassett, E.N. 1988, Effect of bacterial seed treatments on growth of recropped wheat in western Washington, Biol. Cult. Tests Control Plant Dis. 3:53.Google Scholar
  41. Cook, R.J. 1994, Problems and progress in the biological control of wheat take all, Plant Pathol. 43:429–437.CrossRefGoogle Scholar
  42. Corbell, N. and Loper, J.E. 1995, A global regulator of secondary metabolite production in Pseudomonas fluorescens pf-5, J. Bacteriol. 177:6230–6236.PubMedGoogle Scholar
  43. Crowley, D.E., Reid, C.P.P. and Szaniszlo, P.J. 1988, Utilization of microbial siderophores in iron acquisition by oat, Plant Physiol. 87:680–685.PubMedCrossRefGoogle Scholar
  44. Cox, C.D. 1980, Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa, J. Bacteriol. 169:2207–2214.Google Scholar
  45. Darvill, A.G. and Albersheim, P. 1984, Phytoalexins and their elicitore — A defence against microbial infection in plants, Annu. Rev. Plant Physiol. 35:243–275.CrossRefGoogle Scholar
  46. Defago, G., Berling, C.H., Burger, U., Hass, D., Kahr, G., Keel, C., Voisard, C., Writhner, P. and Wuthrich, B. 1990, Suppression of black rot of tobacco and other root disease by strains of Pseudomonas fluorescens, Potential applications and mechanisms, in: Biological Control of Soil Borne Plant Pathogens, D. Hornby, ed., Oxon CAB International pp. 93–108.Google Scholar
  47. Demange, P., Wendenbaum, S., Bateman, A., Dell, A. and Abdallah, M.A. 1987, Bacterial Siderophores: Structure and physicochemical properties of pyoverdins and related compounds, in: Iron Transport in Microbes, Plants and Animals, G. Winkleman, D. Vander Helm and J.B. Neilands, eds., VCH Chemie, Weinheim, Germany.Google Scholar
  48. De Mot, R. and Vanderleyden, J. 1991, Purification of a root adhesive outer membrane protein of root colonizing Pseudomonas fluorescens, FEMS Microbiol. Lett. 81:323–328.CrossRefGoogle Scholar
  49. de Weger, L.A., Lann, B. and Luthenberg, B. 1987, Lipopolysaccharides of Pseudomonas spp. that stimulate plant growth: Composition and use for strain identification, J. Bacteriol. 169:1441–1446.PubMedGoogle Scholar
  50. de Weger, L.A., Van Loosdrecht, M.C.M., Klaasen, H.E. and Lugtenberg, B. 1989, Mutational changes in physicochemical surface properties of plant growth stimulating Pseudomonas spp. do not influence the attachment properties of the cells, J. Bacteriol. 171:2756–2761PubMedGoogle Scholar
  51. de Weger, L.A., Bakker, P.A.H.M., Schippers, B., Van Looschrecht, M.C.M. and Lugtenberg, B. 1991, Mutational changes in physicochemical surface properties of plant growth stimulating Pseudomonas spp. do not influence the attachment properties of the cells, J. Bacteriol. 171:2756–2761.Google Scholar
  52. Dietrich, R.A., Delaney, T.P., Uknes, S.J., Ward, E.R., Ryals, J.A. 1994, Arabidopsis mutants simulating disease resistance response, Cell 77:565–77.PubMedCrossRefGoogle Scholar
  53. Dixon, R.A. and Lamb, C.J. 1990, Molecular communication in interactions between plants and microbial pathogens, Ann. Rev. of Plant Physiol. Plant Mole. Biol. 41:339–367.CrossRefGoogle Scholar
  54. Doke, N. 1983, Involvement of superoxide anion generation in the response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to hyphal cell wall components, Physiol. Plant Pathol. 23:345–357.CrossRefGoogle Scholar
  55. Douglas, C., Halperin, W. and Nester, E.W. 1982, Agrobacterium tumefaciens affected in attachment to plant cells, J. Bacteriol. 152:1265–1275.PubMedGoogle Scholar
  56. Dowling, D.N. and O’Gara, F. 1994, Metabolites of Pseudomonas involved in the biocontrol of plant disease, Trends Biotech. 12:133–141.CrossRefGoogle Scholar
  57. Duffy, B.K. and Weller, D.M. 1992, Suppression of take-all by Trichoderma koningii used individually and in combination with fluorescent Pseudomonas spp. (Abstr.), Phytopathology 82:1080.Google Scholar
  58. Duffy, B.K. and Weller, D.M. 1995, Use of Gaeumannomyces graminis var graminis alone and in combination with fluorescent Pseudomonas spp. to suppress take all of wheat, Plant Dis. 79:907–911.CrossRefGoogle Scholar
  59. Duffy, B.K., Simon, A. and Weller, D.M. 1996, Combination of Trichoderma koningii with fluorescent pseudomonads for control of Take-all of wheat, Phytopathology 86:188–194.CrossRefGoogle Scholar
  60. Duijff, B.J., Meijer, J.W., Bakker, P.A.H.M. and Schippers, B. 1993, Siderophore-mediated competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp., Neth. J. Plant Pathol. 99:277–289.CrossRefGoogle Scholar
  61. Dutrecq, A.P., Debras, J., Stevaux, and Marlier, M. 1991, Activity of 2,4-diacetylphloroglucinol isolated from a strain of Pseudomonas fluorescens to Gaeumannomyces graminis var. tritici., in: Biotic Interactions and Soil-borne Diseases, A.B.R. Beomster, G.J. Bollen, M. Gerlagh, M.A. Ruisson, B. Schippers, and A. Tempel, eds., Elsevier, Amsterdam, The Netherlands, pp.252–257.Google Scholar
  62. Elad, Y. and Baker, R. 1985, Influence of trace amounts of cations and siderophore — producing pseudomonads on chlamydospore germination of Fusarium oxysporum, Phytopathology 75:1047–1052.CrossRefGoogle Scholar
  63. Elad, Y. and Chet. I. 1987, Possible role of competition for nutrients in biocontrol of Pythium damping off by bacteria, Phytopathology 77:190–195.CrossRefGoogle Scholar
  64. Elsherif, M. and Grossmann, F. 1994, Comparative investigations on the antagonistic activity of fluorescent pseudomonads against Gaeumannomyces graminis var. tritici in vitro and in vivo, Microbiol. Res. 149:371–377.CrossRefGoogle Scholar
  65. Fenton, A.M., Stephens, P.M., Crowley, J., O’Callaghan, M. and O’Gara, F. 1992, Exploitation of gene(s) involved in 2,4-diacetylphloroglucinol biosynthesis confer a new biocontrol capability to a Pseudomonas strain, Appl. Environ. Microbiol. 58:3872–3878.Google Scholar
  66. Flaishman, M., Eyal, Z., Voisard, C. and Haas, D. 1990, Suppression of Septoria tritici by phenazine or siderophore deficient mutants of Pseudomonas, Curr. Microbiol. 20:121–124.CrossRefGoogle Scholar
  67. Flaishman, M. 1992, Mechanisms associated with the suppression of the wheat pathogen Septoria tritici and Puccinia recondita by bacteria, Ph.D. thesis, Tel Aviv University, Tel Aviv, Israel.Google Scholar
  68. Fridlender, M., Inbar, J. and Chet, I. 1993, Biological control of soil borne plant pahtogens by a b-1-3 gluconase-producing Pseudomonas cepacia, Soil. Biol. Biochem. 25:1211–1221.CrossRefGoogle Scholar
  69. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, B., Nye, G. Ukness, S., Ward, E., Kessmann, H. and Ryals, J. 1993, Requirement of salicyclic acid for the induction of systemic acquired resistance, Science 261:754–756.PubMedCrossRefGoogle Scholar
  70. Gaffney, T.D., Lam, S.T., Ligon, J., Gates, K., Frazella, A., DiMaio, J., Hill, S., Goodwin, S., Torkewitz, N., Allshouse, A.M., Kempf, H.J. and Becker, J.O. 1994, Global regulation of expresion of antifungal factors by Pseudomonas fluorescens biological control strain, Mol.Plant-Microbe, Interact. 7:455–463.CrossRefGoogle Scholar
  71. Georgakopoulos, D.M., Hondson, N.J., Panopoulos, and Schroth, M.N. 1994, Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene, Appl. Environ. Microbiol. 60:2931–2938.PubMedGoogle Scholar
  72. Gill, P.R. and Warren, G.J. 1988, An iron antagonized fungistatic agent that is not required for iron assimilation from a flourescsent rhizosphere pseudomonads, J. Bacteriol. 170:163–170.PubMedGoogle Scholar
  73. Glick, B.R. and Bashan, Y. 1997, Genetic manipulation of plant growth promoting bacteria to enhance biocontrol of phytopathogens, Biotechnology Adv. 15:353–378.CrossRefGoogle Scholar
  74. Gurusiddaiah, S., Weller, D.M, Sarkar, A. and Cook, R.J. 1986, Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob. Agents Chemother. 29:488–495.CrossRefGoogle Scholar
  75. Gutterson, I. 1990, Microbial fungicides: Recent approaches to elucidating mechanisms, Crit. Rev. Biotechnol. 10:69–91.CrossRefGoogle Scholar
  76. Gutterson, N.I., Layton, T.J., Ziegle. J.S. and Warren, G.J. 1986, Molecular cloning of genetic determinants for inhibition of fungal growth by a fluorescent pseudomonad, J. Bacteriol. 165:696–703PubMedGoogle Scholar
  77. Gutterson, N., Ziegle, J.S., Warren, G.J. and Layton, T.J. 1988, Genetic determinants for catabolite induction for antibiotic biosynthesis in Pseudomonas fluorescens Hv 37a, J. Bacteriol. 170:380–385.PubMedGoogle Scholar
  78. Haas, D., Keel, C., Laville, J., Maurwhofer, M., Oberhansli, J., Schnider, Y., Voisard, C., Wuthrich, B. and Defago, G. 1991, Secondary metabolites of Pseudomonas fluorescens strain CHAO involved in the suppression of root diseases, in: Advances of Molecular Genetics of Plant-Microbe Interactions, H. Hennecke and D.P.S. Verma, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands pp. 450–456.Google Scholar
  79. Hamdan, H., Weller, D.M. and Thomashow, L.S. 1991, Relative importance of fluorescent siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2–79 and M 4–80R, Appl. Environ. Microbiol. 57:3270–3277.PubMedGoogle Scholar
  80. Hammer, P.E., Hill, S. and Ligon, J. 1995, Characterization of genes from Pseudomonas fluorescens involved in synthesis of pyrrolnitrin, Phytopathology 85:1162.Google Scholar
  81. Hammer, P.E., Hill, D.S., Stephen, T.L., Van Pee, K.H. and Ligon, J.M. 1997, Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin, Appl. Environ. Microbiol. 63:2147–2153.PubMedGoogle Scholar
  82. Hammerschmidt, R. and Kuc, J. 1982, Lignification as a mechanism for induced systemic resistance in cucumber, Physiol. Plant Pathol. 20:61–71.CrossRefGoogle Scholar
  83. Hammerschmidt, R., Nuckles, E. and Kuc, J. 1982, Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium, Physiol. Plant Pathol. 20:7382.Google Scholar
  84. Hammerschmidt, R., Lamport, D.T.A. and Muldoon, E.P. 1984, Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum, Physiol. Plant Pathol. 24:43–47.CrossRefGoogle Scholar
  85. Harrison, L.A., Letendre, L., Kovacevich, Pierson, E.A. and Weller, D.M. 1993. Purification of an antibiotic effective against Gaeumannomyces graminis var. tritici produced by a biocontrol agent Pseudomonas aureofaciens, Soil Biol. Biochem. 25:215–221.CrossRefGoogle Scholar
  86. Hill, D.S., Stein, J.I., Torkewitz, N.R., Morse, A.M., Howell, C.R., Pachalatko, J.P., Becker, J.O. and Ligon, J.M. 1994, Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin in biological control of plant diseases, Appl. Environ. Microbiol. 60:78–85.PubMedGoogle Scholar
  87. Hill, S.E., Hammer, P. and Ligon, J. 1997, The role of antifungal metabolites in biological control of plant disease, in: Technology Transfer of Plant Biotechnology, P.M. Greshoff ed., CRC Press Inc., Boca Raton, Florida.Google Scholar
  88. Hoffland, E., Pieterse, C.M.J., Bik, L. and Van Pelt J.A. 1995, Induced systemic resistance in radish is not associated with accumulation of pathogenesis — related proteins, Physiol. Mol. Plant Pathol. 46:309–20.CrossRefGoogle Scholar
  89. Homma, Y. and Suzui, T. 1989, Role of antibiotic production in suppression of raddish damping off by seed bacterization with Pseudomonas cepacia, Annu. Phytopathol. Soc. Japan 55:643–652.CrossRefGoogle Scholar
  90. Howell, C.R. and Stipanovic, R.D. 1979, Control of Bhizoctonia solani on cotton seedlings with Pseudomonas flourescens and with an antibiotic produced by the bacterium, Phytopathol. 69:480–482.CrossRefGoogle Scholar
  91. Howell, C.R. and Stipanovic, R.D. 1980, Suppression of Pythium ultimum induced damping off of cotton seedlings by Pseudomonas fluorescens and its antibiotic pyoluteorin, Phytopathol. 70: 712–715.CrossRefGoogle Scholar
  92. Howie, W.J. and Suslow, T. 1991, Role of antibiotic biosynthesis in the inhibition of Pythium ultimum in the cotton spermosphere and rhizosphere by Pseudomonas fluorescens, Mol. Plant-Microbe Interact. 4: 393–399.CrossRefGoogle Scholar
  93. Hyodo, H. 1991, Stress wound ethylene, in: The Plant Hormone Ethylene, A.K. Matto and J.C. Suttle, eds., CRC Press, Boca Raton pp. 65–80.Google Scholar
  94. Iswandi, A., Bossier, P., Vandenabele, J. and Verstraete, W. 1987, Influence of inoculation density of the rhizopseudomonad strain 7 NSK 2 on the growth and composition of root microbial community of maize (Zea mays) and barley (Hordeum vulgare), Biol. Fert. Soils 4:119–123.Google Scholar
  95. Janisiewicz, W.J. and Marchi, A. 1992, Control of storage rot on various pear cultivare with a saprophytic strain of Pseudomonas syringae, Plant Dis. 76:555–560.CrossRefGoogle Scholar
  96. Jaselvich, C.A. and Anderson, A.J. 1981, Isolation from legume tissues of an agglutinin of saprophytic pseudomonads, Can. J. Bot. 59:264–271.CrossRefGoogle Scholar
  97. Katsuwon, J. and Anderson, A.J. 1989, Response of plant colonizing pseudomonads to hydrogen peroxide, Appl. Environ. Microbiol. 55: 2985–2989.PubMedGoogle Scholar
  98. Katsuwon, J. and Anderson, A.J. 1990, Catatase and superoxide dismutase of root colonizing saprophytic fluorescent pseudomonads, Appl. Environ. Microbiol. 56: 3576–3582.PubMedGoogle Scholar
  99. Katsuwon, J. and Anderson, A.J. 1992, Characterization of catalase activities in a root colonizing isolate of Pseudomonas putida, Can. J. Microbiol. 38:1026–1032.CrossRefGoogle Scholar
  100. Keel, C., Voisard, C., Berling, C.H., Khar, G. and Defago, G. 1989, Iron sufficiency, a prerequisite for suppression of tobacco root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions, Phytopathol. 79:584–589.CrossRefGoogle Scholar
  101. Keel, C., Wirthner, P., Oberhansli, T.H., Voisard, C., Burger, U., Hass, D. and Defago, G. 1990, Pseudomonads as antagonists of plant pathogens in rhizosphere: Role of antibiotic 2, 4-diacetylphloroglucinol in the suppression of black rot of tobacco, Symbiosis 9:327–341.Google Scholar
  102. Keel, C., Schinder, U., Maurhofer, M., Voisard, C., Laville, J., Murger, U., Wirthner, P., Hass, D. and Defago, G. 1992, Suppression of root disease by Pseudomonas fluorescens CHAO, Importance of bacterial secondary metabolite 2,4-Diacetyl phloroglucinol, Mol. Plant-Microbe. Interact. 5:4–13.CrossRefGoogle Scholar
  103. Keel, C., Weiler, D.M., Natsch, A., Defago, G., Cook, R.J. and Thomashow, L.S. 1996, Conservation of the 2,4-diacetylphloroglucinal biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations, Appl. Environ. Microbiol. 65:552–563.Google Scholar
  104. Keller, H., Bonnet, P., Galiana, E., Pruvot, L., Friedrich, L., Ryals, J. and Pierse, R. 1996, Salicyclic acid mediated Elicitin-Induced systemic acquired resistance but not necrosis in tobacco, Molecular Plant-Microbe Interac. 9:696–703.CrossRefGoogle Scholar
  105. Kessmann, H., Staub, T., Hofmann, C., Maetzka, T., Herzog, J., Ward, E., Uknes, S. and Ryals, J. 1994, Induction of systemic acquired disease resistance in plants by chemicals, Annu. Rev. Phytopathol. 32:439–459.PubMedCrossRefGoogle Scholar
  106. Kloepper, J.W., Leong, J., Teintze, M. and Schroth, M.N. 1980a, Enhanced plant growth by siderophore produced by plant growth promoting rhizobacteria, Nature 286:885–886.Google Scholar
  107. Kloepper, J.W., Leong, J., Teintze, M. and Schroth, M.N. 1980b, Pseudomonas siderophores: a mechanism explaining disesase suppressive soils, Curr. Microbiol. 4:317–320.Google Scholar
  108. Kloepper, J.W. and Schroth, M.N. 1981, Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora, Phytopathology 71:1020–1024.CrossRefGoogle Scholar
  109. Kloepper, J.W., Lifshitz, R. and Schroth, M.N. 1988, Pseudomonas inoculants to benefit plant production, ISI Atlas Sci., Animal Plant Sci. 60–64.Google Scholar
  110. Kloepper, J.W., Tuzun, S. and Kuc, J.A. 1992, Proposed definitions related to induced disease resistance, Biocon Sci. Technol. 2:349–351.CrossRefGoogle Scholar
  111. Klotz, M.G., Hoffmann, R. and Novacky, A. 1989, The critical role of the hydroxyl radical in microbial infection of plants, in: Plant Membrane Transport: The Current Position, J. Dainty, M.I. Michelis, E. Marre and F.R. Coldogono, eds., Elsevier, Amsterdam pp. 657–662.Google Scholar
  112. Klotz, M.G. and Hutcheson, S.W. 1992, Multiple periplasmic catalases in phytopathogenic strains of Pseudomonas syrinage, Appl. Environ. Microbiol. 58:2468–2473.PubMedGoogle Scholar
  113. Koby, S., Schickler, H., Chet, I and Oppenheim, A.B. 1994, The chitinase encoding Tn7-based chi A gene endows Pseudomonas fluorescens with the capacity to control plant pathogens in soil, Gene 147:81–83.PubMedCrossRefGoogle Scholar
  114. Kraus, J. and Loper, J.E. 1995, Characterization of a genomic region required for production of the anti-biotic pyoluteorin by the the biological control agent Pseudomonas fluorescens Pf-5, Appl. Environ. Microbiol. 61:849–854.PubMedGoogle Scholar
  115. Lam, S.T. and Gaffney, T.D. 1993, Biological activities of bacteria used in plant pathogen control, in: Biotechnology in Plant Disease Control, I. Chet, ed., Wiley Liss Inc., N.Y. pp.291–320.Google Scholar
  116. Lambert, B., Leyns, F., Van Rooyen, F., Gossele, F., Papon, Y. and Swings, B. 1987, Rhizobacteria of maize and their activities, Appl. Environ. Microbiol. 53:1866–1871.PubMedGoogle Scholar
  117. Leeman, M., Van Pelt, J.A., Den Ouden, F.M., Heinsbroek, M., Bakker, P.A.H.M. and Schipper, B. 1995a, Induction of systemic resistance against Fussrium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens, Phytopathology 85:1021–1027.CrossRefGoogle Scholar
  118. Leeman, M., Van Pelt, J.A., den Ouden, F.M., Heinsbroek, M., Bakker, P.A.H.M. and Schippers, B. 1995b, Induction of systemic resistance by Pseudomonas fluorescens in radish cultivare differing in susceptibility to Fusarium wilt, using a novel bioassay, Eur. J. Plant Pathol. 101:655–664.CrossRefGoogle Scholar
  119. Leeman, M., Den Ouden, F.M., Van Pelt, J.A., Dirkx, F.P.M., Steijl, H., Bakker, H.M. and Schippers, B. 1996, Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens, Phytopathology, 86:149–155.CrossRefGoogle Scholar
  120. Lemanceau, P. and Alabouvette, C. 1993, Suppression of Fusarium wilt by fluorescent Pseudomonas: Mechanisms & Application, Biocontrol Sci. and Technol. 3:219–234.CrossRefGoogle Scholar
  121. Lemanceau, P. and Alabouvette, C. 1991, Biological control of Fusarium diseases by fluorescent Pseudomonas and non pathogenic Fusarium, Crop. Prot. 10:279–286.CrossRefGoogle Scholar
  122. Lenanceau, P., Bakker, P.H.A.M., de Kogel, W.J., Alabouvette, C. and Schipper, B. 1992, Effect of Pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnation by nonpathogenic Fusarium oxysporum Fo47, Appl. Env. Microbiol. 58:2978–2982Google Scholar
  123. Lemanceau, P., Bakker, P.A.H.M., de Kogel, W.J., Alabouvette, C. and Schipper, B. 1993, Antagonistic effects of nonpathogenic Fusarium oxysporum Fo47 and Pseudobactin 358 upon pathogenic Fusarium, Appl. Envi. Microbiol. 59:74–82.Google Scholar
  124. Leong, J. 1986, Siderophores: Their biochemistry and possible role in the biocontrol of plant pathogens, Annu Rev. Phytopathol. 24:187–209.CrossRefGoogle Scholar
  125. Lim, H.S., Kim, S.D. 1991, Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani an agent of plant root rot, Appl. Environ. Microbiol. 57:510–516.PubMedGoogle Scholar
  126. Lindsay, W.L. 1979, Chemical equilibria in soils, John Wiley & Sons, New York.Google Scholar
  127. Linthorst, H.J.M., Cornelissen, B.J.C., Vatikan, J.A.L., VandeRhee, M., Meuwissen, R.L.J., Gonzolez-Jaen, M.T. and Bol, J.F. 1990, Induction of plant genes by compatible and incompatible virus plant interaction, in: Recognition and Response in Plant-Virus Interactions, R.S.S. Fraser, ed., Springer-Verlag, New York, 361 pp.CrossRefGoogle Scholar
  128. Liu, L., Kloepper, J.W. and Tuzun, S. 1992, Induction of systemtic resistance against cucumber moisac virus by seed inoculation with select rhizobacterial strains (Abstr.), Phytopathology 82:1108–1109.Google Scholar
  129. Liu, L., Kloepper, J.W. and Tuzun, S. 1995, Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria, Phytopathology 85:695–698.CrossRefGoogle Scholar
  130. Liu, L., Kloepper, J.M., Tuzun, S. 1995b, Induction of systemic aquircd resistance in cucumber by plant growth promoting bacteria: duration of protection and effect of host resistance on protection and root colonization, Phytopathology 85:1064–68.CrossRefGoogle Scholar
  131. Loper, J.E. 1988, Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain, Phytopathology 78:166–172.CrossRefGoogle Scholar
  132. Loper, J.E. 1990, Molecular and biochemical bases for activities of biological control agents: The role of siderophores, in: New Directions in Biological Control: Alternatives for Suppressing Agricultural Pests and Diseases, Alan R., ed., Liss. Inc. New York.Google Scholar
  133. Loper, J.E. and Buyer, J.S. 1991, Siderophores in microbial interactions on plant surfaces, Molecular Plant-Microbe Interac. 4:5–13.CrossRefGoogle Scholar
  134. Matthysses, A.G. 1987, Characterization of non attaching mutants of Agrobacterium tumefaciens, J. Bacteriol. 169:313–323.Google Scholar
  135. Mauch, F., Mauch-Mani, B. and Boiler, T. 1988, Antifungal hydrolase in pea tissue, II, Inhibition of fungal growth by combinations of chitinase and B-l,3-glucanases, Plant Physiol. 88:936–942.PubMedCrossRefGoogle Scholar
  136. Maurhofer, M., Keel, C., Schnider, U., Voisard, C., Hass, D. and Defago, G., 1992, Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity, Phytopathol. 82:190–195.CrossRefGoogle Scholar
  137. Maurhofer, M., Hase, C., Meuwly, P., Metraux, J.P. and Defago, G. 1994, Induction of systemic resistance of tobacco to tobacco necrosis virus by the root colonizing Pseudomonas fluorescens stsrain CHAO: Influence of the gac A gene and of pyoverdine production, Phytopathology 84:139–146.CrossRefGoogle Scholar
  138. Maurhofer, M., Keel, C., Haas, D. and Defago, G. 1995, Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production, Plant Pathol. 44:40–50.CrossRefGoogle Scholar
  139. May, R., Volksch, B. and Kampmann, G. 1997, Antagonistic activities of epiphytic bacteria from soybean leaves against Pseudomonas syringane pv. glycinea in vitro and inplanta, Microb. Ecol. 34:118–124.PubMedCrossRefGoogle Scholar
  140. Metraux, J.P. Ahl-Goy, P., Staub, T., Speich, J., Steinemann, A., Ryals, J. and Ward, E. 1991, Induced systemic resistance in cucumber in responses to 2,6-dichloro-isonicotinic acid and pathogens, in: Advances in Molecular Genetics of Plant-Microbe Interactions, Vol.1, H. Hennecke and P.S. Verma, eds., Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  141. Meyer, J.M., Azelvandre, P. and Georges, C. 1992, Iron metabolism in Pseudomonas salicylic acid, a siderophore of Pseudomonas fluorescens CHAO, Biofector. 4:23–27.Google Scholar
  142. Miller, C.D., Kim, Y.C. and Anderson, A.J. 1997, Cloning and mutational analysis of the gene forthe stationary phase inducible catalase (cat C) from Pseudomonas putida, J. Bacterio. 179:5241–5245.Google Scholar
  143. Miller, G.W., Pushnik, J.C., Brown, J.C., Emery, T.E., Jolley, V.D. and Arnick, K.Y. 1985, Uptake and translocation of iron from ferrated rhodotorulic acid in tomato, J. Plant Nutr. 8:249–264.CrossRefGoogle Scholar
  144. Misaghi, I.J., Stowell, L.J., Grogan, R.G. and Spearman, L.C. 1982, Fungistatic activity of water-soluble fluorescent pigments of fluorescent pseudomads, Phytopathology 72:33–36.CrossRefGoogle Scholar
  145. Neilands, J.B. 1982, Microbial envelope proteins related to iron, Annu. Rev. Microbiol. 36:285–309.PubMedCrossRefGoogle Scholar
  146. Neilands, J.B. 1981, Microbial iron compounds, Ann. Rev. Biochem. 50:715–731.PubMedCrossRefGoogle Scholar
  147. Neilands, J.B., and Leong, S.A. 1986, Siderophores in relation to plant growth and disease, Annu. Rev. Plant Physiol. 37:187–208.CrossRefGoogle Scholar
  148. Neilands, J.B., Konopka, K., Schwyn, B., Coy, M., Francis, R.T., Paw, B.H. and Bagg, A. 1987, Comparative biochemistry of microbial iron assimilation, in: Iron Transport in Microbes, Plants and Animals, G. Winkelmann, D. Vander Helm and J.B. Neiland, eds., pp 3–33, Verlagsgesells chaft mbH, Weinheim.Google Scholar
  149. Nowak-Thompson, B., Gould, S.J., Kraus, J. and Loper, J.E. 1994, Production of 2,4-diacetylphoroglucinol by the biocontrol agent Pseudomonas fluorescens pf-5, Can. J. Microbiol. 40:1064–1066.CrossRefGoogle Scholar
  150. Orlando, J.A. and Neilands, J.B. 1982, Ferrichrome compounds as a source of iron for higher plants, in: Chemistry and Biology of Hydroxamic Acids, H. Kehl and S. Karger, eds., Basel, Switzerland.Google Scholar
  151. O’Sullivan, D.J. and O’Gara, F. 1991, Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens, Microbiol. Rev. 56:662–676.Google Scholar
  152. Ownley, B.H., Weiler, D.M. and Thomashow, L.S. 1992, Influence of in situ and in vitro pH on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79, Phytopathology 82:178–184.CrossRefGoogle Scholar
  153. Park, C.S., Paulitz, T.C. and Baker, R. 1988, Biocontrol of Fusarium wilt of cucumber resulting from interaction between Pseudomonas putida and non pathogenic Fusarium oxysporum, Phytopathology 78:190–194.CrossRefGoogle Scholar
  154. Paulitz, T.C., Ahmad, J.S. and Baker, R. 1990, Integration of Pythium nunn and Trichoderma harzianum isolate T-95 for biological control of Pythium damping off of cucumber, Plant Soil 121:243–250.CrossRefGoogle Scholar
  155. Pfender, W.F., Kraus, P. and Loper, J.E. 1993, A genomic region from Pseudomonas fluorescens PF-5 required for Pyrrolnitrin production reduction and inhibition of Pyrenophore tritici-vepentis in wheat straw, Phytopathology 83:1223–1228.CrossRefGoogle Scholar
  156. Pieterse, C.M.J., Van Wees, S.C.M., Hoffland, E., Van Pelt, J.A. and Van Loon, L.C. 1996, Systemic resistance in arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis related gene expression, Plant cell 8:1225–1237.PubMedGoogle Scholar
  157. Pierson, E.A. and Weller, D.M. 1994, Use of mixtures of fluorescent pseudomonads to suppress take all and improve the growth of wheat, Phytopathology 84:940–947.CrossRefGoogle Scholar
  158. Pierson, L.S. and Thomashow, L.S. 1992, Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30–84, Mol. Plant-Microbe Interact. 5:330–339.PubMedCrossRefGoogle Scholar
  159. Pierson L.S., Gaffney, T., Lam, S. and Gong, F. 1995, Molecular analysis of genes encoding penazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30–84, FEMS Microbiol. Lett. 134:299–307.PubMedGoogle Scholar
  160. Poplawsky, A.R., Peng, Y.F. and Ellingboe, A.H. 1988, Genetics of antibiosis in bacterial strains suppressive to take-all, Phytopathol. 78: 423–432.CrossRefGoogle Scholar
  161. Raaijmakers, J.M., Weller, D.M. and Thomashow, L.S. 1997, Frequency of antibiotic producing Pseudomonas spp. in natural environments, Appl. Environ. Microbiol. 63:881–887.PubMedGoogle Scholar
  162. Rosales, A.M., Thomashow, L., Cook, R.J. and Mew, T.W. 1995, Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp., Phytopathology 85:1028–1032.CrossRefGoogle Scholar
  163. Sarniguet, A., Kraus, J., Henkels, M.D., Muehlchen, A.M. and Loper, J. 1995, The sigma factor affects antibiotic production and biological control activity of Pseudomonas fluorescens Pf-5, Proc. Natl. Acad. Sci., USA 92:12255–12259.PubMedCrossRefGoogle Scholar
  164. Scher, F.M. and Baker, R. 1982, Effect of of Pseudomonas putida and a synthetic iron chelotor on induction of soil suppressiveness to Fusarium wilt pathogens, Phytopathology 72:1567–1573.CrossRefGoogle Scholar
  165. Scher, F.M., Kloepper, J.M. and Singleton, C.A. 1985, Chemotaxis of fluorescent Pseudomonas spp. to soybean seed exudates in vitro and in soil, Can. J. Microbiol. 31:570–574.CrossRefGoogle Scholar
  166. Scher, F.M. 1986, Biological control of Fusarium wilts by Pseudomonas putida and its enhancement with EDDHA, in: Iron, Siderophores and Plant Diseases, T.R. Swinburne, ed., Plenum Press, New York pp.109–117.CrossRefGoogle Scholar
  167. Scher, F.M., Kloepper, J.W., Singleton, C.A., Zaleska, I. and Laliberte, M. 1988, Colonization of soybean roots by Pseudomonas and Serratia species: relationship to bacterial motility, chemotaxis and generation time, Phytopathol. 78:1055–1059.CrossRefGoogle Scholar
  168. Schnider, U., Keel, C., Blumer, C., Troxler, J., Defago, G. and Haas, D. 1995a, Amplification of house keeping sigma factor in Pseudomonas fluorescens CHAO enhances antibiotic production and improves biocontrol abilities, J. Bacteriol. 177:5387–5392.Google Scholar
  169. Schinder, U., Keel, C., Voisard, C., Defago, G. and Haas, D. 1995b, Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHAO:mutational inactivation of the genes results in overproduction of antibiotic pyluteorin, Appl. Environ. Microbiol. 61:3856–3864.Google Scholar
  170. Schippers, B., Bakker, A.W. and Bakker, A.H.M. 1987, Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practice, Ann. Rev. Phythopathol. 25:339–358.CrossRefGoogle Scholar
  171. Shanahan, P., Borro, A., O’ Gara, F. and Glennon, J.D. 1992a, Isolation, trace enrichment and liquid Chromatographic analysis of diacetyl phloroglucinol in culture and amperometric detection, J. Chromatogr. 606:171–177.Google Scholar
  172. Shanahan, P., Glennon, J.D., Crowley, J.J., Donnelly, D.F. and O’Gara, F. 1992b, Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production, Appl. Environ. Microbiol. 58:353–358.Google Scholar
  173. Singh, L. 1978, In vitro screening of some chemicals against three phytopathogenic fungi, J. Indian Bot. Soc. 57:191–195.Google Scholar
  174. Snch, B., Dupler, M., Elad, Y. and Baker, R. 1984, Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium suppressive soil, Phytopathology 67:622–628.Google Scholar
  175. Snch, B. 1998, Use of non pathogenic or hypovirulent fungal strains to protect plants against closely related fungal pathogens, Biotechnol. Adv. 16:1–32.CrossRefGoogle Scholar
  176. Stephens, P.M., Crowley, J.J. and O’Connell, C. 1993, Selection of Pseudomonad strains inhibiting Pythium ultimum on sugarbeet seeds in soil, Soil Biol. Biochem. 25:1283–1288.CrossRefGoogle Scholar
  177. Stutz, E.W., Defago, G. and Kern, H. 1986, Naturally occuring fluorescent pseudomonads involved in suppression of black rot of tobacco, Phytopathol. 76:181–185.CrossRefGoogle Scholar
  178. Sutherland, M.W. 1991, The generation of oxygen radicals during host plant response to infection, Mol. Physiol. Plant. Pathol. 39:79–93.CrossRefGoogle Scholar
  179. Tari, P.H. and Anderson, A.J. 1988, Fusarium wilt suppression and agglutinability of Pseudomonas putida, Appl. Environ. Microbiol. 54:2037–2041.PubMedGoogle Scholar
  180. Teintze, M., Hossain, M.B., Barnes, C.L., Leong, J. and Vander Helm, D. 1981, Structure of ferric pseudobactin, a siderophore from a plant growth promoting Pseudomonas, Biochemistry 20:6446–6457.PubMedCrossRefGoogle Scholar
  181. Thomashow, L.S. and Weller, D.M. 1988, Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici, J. Bacteriol. 170:3499–3508.PubMedGoogle Scholar
  182. Thomashow, L., Weller, D.M., Bonsall, R.F. and Pierson III, L.S. 1990, Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat, Appl. Environ. Microbiol. 56:908–912.PubMedGoogle Scholar
  183. Thomashow, L.S. 1991, Molecular basis of antibiosis mediated by rhizosphere Pseudomonads, in: Plant Growth Promoting Rhizobacteria, C. Keel, B. Koller and G. Defago, eds., WPRS Bulletin pp. 109–114.Google Scholar
  184. Thomashow, L.S., Bonsall, R.F. and Weller, D.M. 1996, Antibiotic production by soil and rhizosphere microbes in situ, in: Mannual of Environmental Microbiology, C.J. Hurst, G.R. Knudsen, M.J. Mclnerney, L.D. Stetzenbach and M.V Walter, eds., A.S.M. Press, Washington, D.C. pp.493–499.Google Scholar
  185. Thomashow, L.S. and Weller, D.M. 1996, Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites, in: Plant-Microbe Interactions, Vol. 1, G. Stacey and N. Keen, eds., Champman and Hall., New York, N.Y. pp. 187–235.CrossRefGoogle Scholar
  186. Torkewitz, N.R. and Lam, S.T. 1991, The effect of population level of biocontrol bacteria on disease control efficacy, Phytopathol. 81:1179.Google Scholar
  187. Tuzun, S. and Kloepper, J. 1994, Induced systemic resistance by plant growth promoting rhizobacteria, in: Improving Plant Productivity with Rhizosphere Bacteria, M.H. Ryder, P.M. Stoprenes and G.D. Bowen, eds., CSIRO, Adelaide pp. 104–109.Google Scholar
  188. Vandenbergh, P.A. and Gonzalez, C.F. 1984, Method for protecting the growth of plants employing mutant siderophore producing strains of Pseudomonas putida, U.S. Patent #4, 479,936.Google Scholar
  189. Van Peer, R. and Schippers, B. 1989, Plant growth responses to bacterization and rhizosphere microbial development in hydroponic cultures, Can. J. Microbiol. 35:456–463.CrossRefGoogle Scholar
  190. Van Peer, P., Punte, H.L.M., de Weger, L.A. and Schippers, B. 1990a, Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization potential, Appl. Environ. Microbiol. 56:2462–2470.Google Scholar
  191. Van Peer, R., Van Kuik, A.J., Rattink, H. and Schippers, B. 1990b, Control of Fusarium wilt of carnation growth on rock wool by Pseudomonas sp. strain WCS417r and by FeEDDHA, Neth. J. Plant Pathol. 96:119–132.Google Scholar
  192. Van Peer, R., Niemann, G.J., Schippers, B. 1991, Induced resistance and phytoalexin accumulation inbiological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r, Phytopathology 81:728–734.CrossRefGoogle Scholar
  193. Van Peer, R. and Schippers, B. 1992, Lipopolysaccharides of plant growth promoting Pseudomonas sp. strain WCS417 induce resistan in carnation of Fusarium wilt, Neth. J. Plant. Pathol. 98:129–139.CrossRefGoogle Scholar
  194. Vernooij, B., Ukness, S., Ward, E. and Ryals, J. 1994, Salicylic acid as a signal molecule in plant-pathogen interaction, Curr. Opinion Cell Biol. 6:275–279.PubMedCrossRefGoogle Scholar
  195. Vesper, S.J. 1987, Production of pili (fimbriae) by Pseudomonas fluorescens and correlation with attachment to corn roots, Appl. Environ. Microbiol. 53:1397–1405.PubMedGoogle Scholar
  196. Voisard, C., Bull, C.T., Keel, C., Laville, J., Maurhofer, M., Schinider, U., Defago, G. and Haas, D. 1994, Biocontrol of root diseases by Pseudomonas fluorescens CHAO:current concepts and experimental approaches, in: Molecular Ecology of Rhizosphere Microorganisms, F. O’Gara, D.N. Dowling and B. Boesten, eds., VCH Weinhaim Germany pp.67–89.CrossRefGoogle Scholar
  197. Vincent, M.V., Harrison, L.A., Brackin, J.M., Kovacevic, P.A., Mukerji, P., Weller, D.M. and Pierson, E.A. 1991, Genetic analysis of the antifungal activity of a soilborne Pseudomonas aeurofaciens strain, Appl. Environ. Microbiol., 57:2928–2934.PubMedGoogle Scholar
  198. Voisard, C., Keel, C., Hass, D. and Defago, G., 1989, Cyanide production by Pseudomonas fluorescens helps suppress black rot of tobacco under gnotobiotic system, EMBO J. 8:351–358.PubMedGoogle Scholar
  199. Visca, P., Ciervo, A., Sanfilippo, V. and Orsi, N. 1993, Iron. regulated salicylate synthesis by Pseudomonas spp., J. Gen. Microbiol. 139:1995–2001.PubMedCrossRefGoogle Scholar
  200. Wang, J., Budde, A.D. and Leong, S.A. 1989, Analysis of ferrichrome biosynthesis in the phytopathogenic fungus Ustilago maydis: cloning of an ornithine-N-Oxygenase gene, J. Bacteriol. l71:2811–2818.Google Scholar
  201. Wang, Y., Brown, H.N., Crowley, D.E. and Szaniszlo, P.J. 1993, Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber, Plant, Cell and Environ. 16:579–585.CrossRefGoogle Scholar
  202. Wei, G., Kloepper, J.W. and Tuzun, S. 1991, Induction of systemic resistance of cucumber to Colletrichum orbiculare by select strains of plant growth promoting rhizobacteria, Phytopathology 81:1508–1512.CrossRefGoogle Scholar
  203. Wei, G., Kloepper, J.W. and Tuzun, S. 1994, Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions, in: Improving Plant Productivity with Rhizosphere Bacteria, M.H. Ryder, P.M. Stephens and G.D. Bowen, eds., CSIRO, Division of soils, Glen Osmond, Australia pp.70–71.Google Scholar
  204. Wei, G., Kloepper, J.W. and Tuzun, S. 1996, Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions, Phytopathology 86:221–224.CrossRefGoogle Scholar
  205. Weinberg, E.D. 1986, Regulation of secondary metabolism by trace metals, in: Cell Metabolism Growth and Environment, T.A.V. Subramanian, ed., Chemical Rubber Corporation Press, Boca Raton, FL.Google Scholar
  206. Weiler, D.M. and Cook, R.J. 1986, Suppression of root disease of wheat by flourescent pseudomonads and mechanisms of action, in: Iron, Siderophores and Plant Diseases, T.R. Swinburne, ed., Plenum Press, New York pp. 99–107.CrossRefGoogle Scholar
  207. Weller, D.M. 1988, Biological control of soil borne plant pathogens in the rhizosphere with bacteria, Ann. Rev. Phytopathol. 26:379–407.CrossRefGoogle Scholar
  208. Weiler, D.M. and Thomashow, L.S. 1993, Use of rhizobacteria for biocontrol, Curr. Opin. Biotechnol. 4:306–311.CrossRefGoogle Scholar
  209. Weller, D.M. and Thomashow, L.S. 1994, Current challenges in introducing beneficial microorganisms into the rhizosphere, in: Molecular Ecology of Rhizosphere Microorganisms: Biotechnology and the Release of GMO’s, F. O’Gara, D.N. Dowling and B. Boesteneds, eds., VCH, Weinheim, Germany 1–18.CrossRefGoogle Scholar
  210. White, R.F. 1979, Acetylsalicylic acid induces resistance to tobacco mosaic virus of tobacco, Virology 99:410–412.PubMedCrossRefGoogle Scholar
  211. Xu, G.W. and Gross, D.C. 1986, Selection of fluorescent pseudomonads antagonistic to Erwinia carotovora as suppressive of potato seed piece decay, Phytopathol. 76:414–422.CrossRefGoogle Scholar
  212. Yuen, G., Hendson, M., Relia, M. and Schroth, M.N. 1987, The roles of Fe competition and antibiosis in the inhibition of Pythium ultimum by Pseudomonas fluorescens biovar. IV, Phytopathol. 77:1758.CrossRefGoogle Scholar
  213. Zdor, R.E. and Anderson, A.J. 1992, Influence of root colonizing bacteria on the defense response of bean, Plant Soil 140:99–107.CrossRefGoogle Scholar
  214. Zhou, T., Rankin, L. and Paulitz, T.C. 1992, Induced resistance in the biological control of Pythium aphanidermatum by Pseudomonas spp. on European cucumber (Abstr), Phytopathology 82:1080.Google Scholar
  215. Zhou, T. and Paulitz, T.C. 1994, Induced resistance in the biocontrol of Pythium aphanidermatum by Pseudomonas spp. on cucumber, J. Phytopathol. 142:51–63.Google Scholar
  216. Zimmermann, A., Reimmann, C., Galimand, M. and Haas, D. 1991, Anaerobic growth and cyanide synthesis of P. aeruginosa depend on anr, a regulatory gene homologous with fnr. of E. coli. Mol. Microbiol. 5:1483–1490.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • K. V. B. R. Tilak
    • 1
  • Geeta Singh
    • 1
  • K. G. Mukerji
    • 2
  1. 1.Division of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Applied Mycology Laboratory, Department of BotanyUniversity of DelhiDelhiIndia

Personalised recommendations