Informative Case Studies

  • E. G. Luebeck
  • C. Travis
  • K. Watanabe
Part of the Nato · Challenges of Modern Society book series (NATS, volume 23)


Much of what we know about the interaction of radon and tobacco smoke in the etiology of human lung cancer derives from studies of uranium miners. The Colorado Plateau uranium miners’ cohort is one of the oldest and most thoroughly studied cohorts showing the effect of radon exposures on lung cancer incidence in miners. It has also served as one of the first epidemiological data sets where the exact solution of the two-mutation clonal expansion model was employed for the analysis (Moolgavkar et al., 1993). See Chapter 6 for a description of this model and for definitions of the central quantities used in the likelihood analysis of time-to-tumor data. The analysis described here presents an example of the recursive scheme for the computation of tumor probabilities when exposure patterns are piecewise constant (see section 6.5).


Familial Adenomatous Polyposis Human Model Radon Exposure Human Risk British Doctor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashley, D.J.B. (1969): Colonic cancer arising in polyposis coli. J. Med. Gen. 6, 376–378.CrossRefGoogle Scholar
  2. Bishop, Y.M.M., Fienberg, S., and Holland, P. (1975). Discrete Multivariate Analysis. MIT Press, Cambridge.Google Scholar
  3. Bolanowska, W., and Golacka, J. (1972). Absorption and elimination of tetrachloroethylene in humans under experimental conditions. Medical Pr 23, 109–119.Google Scholar
  4. Buchmann, A., Ziegler, S., Wolf, A., Robertson, L.W., Durham, S.K. and Schwarz, M. (1991): Effects of polychlorinated biphenyls in rat liver: Correlation between primary subcellular effects and promoting activity. Toxicol. Appl. Pharmacol. 111, 454–468.CrossRefGoogle Scholar
  5. Buchmann, A., Stinchcombe, S., Kürner, W., Hagenmaier, H.P. and Bock, K.W. (1994): Effects of 2,3,7,8-tetrachloro-and 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin on the proliferation of preneoplastic liver cells in the rat. Carcinogenesis 15, 1143–1150.CrossRefGoogle Scholar
  6. Cavanee, W.K. and White, R.L. (1995): The genetic basis of cancer. Sci-Am. 272, 3, 72–79.CrossRefGoogle Scholar
  7. Cohen, S.M., Ellwein, L.B., Okamura, T., Masui, T., Johansson, S.L., Smith, R.A., Wehner, J.M., Khachab, M., Chappel, C.I., Schoenig, G.P., Emerson, J.L. and Garland, E.M. (1991): Comparitive Bladder Tumor Promoting Activity of Sodium Saccharin, Sodium Ascorbate, Related Acids, and Calcium Salts in Rats. Cancer Research 51, 1766–1777.Google Scholar
  8. Cohen, S.M. and Ellwein, L.B. (1993): Use of Cell Proliferation Data in Modeling Urinary Bladder Carcinogenesis. Environ. Health Persp. 101, 111–114.Google Scholar
  9. Federal Register (1986). Guidelines for carcinogen risk assessment. Fed. Regist. 51, 33992–34003.Google Scholar
  10. Fiserova-Bergerova, V., and Hughes, H. C. (1983). Species differences on bioavailability of inhaled vapors and gases. In Modeling of Inhalation Exposure to Vapors: Uptake, Distribution, and Elimination, Vol. II (V. Fiserova-Bergerova, Ed.), pp. 97–106. CRC Press, Boca Raton.Google Scholar
  11. Howe, R. B. (1983). GLOBAL83: An Experimental Program Developed for the U.S. Environmental Protection Agency as an Update to GLOBAL82: A Computer to Extrapolate Quantal Animal Toxicity Data to Low Doses. Ruston, LA: K.S. Crump and Co., Inc. (unpublished).Google Scholar
  12. Mordenti, J. (1986). Man versus beast: pharmacokinetic scaling in mammals. J. Pharm. Sci. 75, 1028–1040.CrossRefGoogle Scholar
  13. Ketkar, M.B., Holste, J., Preussmann, R. and Althoff, J. (1983): Carcinogenic Effect of Nitrosomor-pholine administered in the Drinking Water to Syrian Golden Hamsters. Cancer Lett. 17(3), 333–338.CrossRefGoogle Scholar
  14. Knudson, A.G. (1971): Mutation and Cancer: Statistical study of retinoblastoma. Proc. Nat. Acad. Sci., USA, 68, 820–823.CrossRefGoogle Scholar
  15. Lijinsky, W., Kovatch, R.M., Riggs, C.W. and Walters, P.T. (1988): Dose Response Study with N-Nitrosomorpholine in Drinking Water of F-344 Rats. Cancer Research 48, 2089–2095.Google Scholar
  16. Luebeck, E.G., Moolgavkar, S.H., Buchmann, A., and Schwarz, M. (1991): Effects of polychlorinated biphenyls in rat liver: Quantitative analysis of enzyme-altered foci. Toxicol. Appl. Pharmacol. 111, 469–484.CrossRefGoogle Scholar
  17. Moolgavkar, S.H., Dewanji, A., and Luebeck, G. (1989): Cigarette smoking and lung cancer: reanalysis of the British doctors’ data. J Natl Cancer Inst 81, 415–420.CrossRefGoogle Scholar
  18. Moolgavkar, S.H., Luebeck, E.G., de Gunst, M., Port, R.E., and Schwarz, M. (1990a): Quantitative analysis of enzyme-altered foci in rat hepatocarcinogenesis experiments I: Single agent regimen. Carcinogenesis 11, 8, 1271–1278.CrossRefGoogle Scholar
  19. Moolgavkar, S.H., Cross, F.T., Luebeck, E.G., and Dagle, G.E. (1990b): A two-mutation model for radon-induced lung tumors in rats. Radiation Research 121, 28–37.CrossRefGoogle Scholar
  20. Moolgavkar, S.H. and Luebeck, E.G. (1992): Multistage carcinogenesis’: Population-based model for colon cancer. J. Natl. Cancer Inst. 84, 610–618.CrossRefGoogle Scholar
  21. Moolgavkar, S.H., Luebeck, E.G., Krewski, D., and Zielinski, J.M. (1993): Radon, Cigarette Smoke, and Lung Cancer: A Reanalysis of the Colorado Plateau Uranium Miners’ Data. American Journal of Epidemiology, Vol. 4, no.3, 204–217.CrossRefGoogle Scholar
  22. National Toxicology Program (1986). NTP Technical Report on the Toxicology and Carcinogenesis of Tetrachloroethylene (Perchloroethylene), CAS 127-18-4, in F344/N Rats and B6C3F1 Mice (Inhalation Studies). (Report #NTP TR 311, NIH Publ. No. 86-2567). U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, NTP, Washington, D.C.Google Scholar
  23. Rickert, D. E., Baker, T. S., Bus, J. S., Barrow, C. S., and Irons, R. D. (1979). Benzene disposition in the rat after exposure by inhalation. Toxicol. Appl. Pharmacol. 49, 417–423.CrossRefGoogle Scholar
  24. Sabourin, P. J., Bechtold, W. E., Birnbaum, L. S., Lucier, G., and Henderson, R. F. (1988). Differences in the metabolism and disposition of inhaled [3H]benzene by F344/N rats and B6C3F1 mice. Toxicol. Appl. Pharmacol. 94, 128–140.CrossRefGoogle Scholar
  25. Sabourin, P. J., Chen, B. T., Lucier, G., Birnbaum, L. S., Fisher, E., and Henderson, R. F. (1987). Effect of dose on the absorption and excretion of [14C]benzene administered orally or by inhalation in rats and mice. Toxicol. Appl. Pharmacol. 87, 325–336.CrossRefGoogle Scholar
  26. Sato, A., Nakajima, T., Fujiwara, Y., and Hirosawa, K. (1974). Pharmacokinetics of benzene and toluene. Int. Arch. Arbeitsmed. 33, 169–182.CrossRefGoogle Scholar
  27. Sato, A., Nakajima, T., Fujiwara, Y., and Murayama, N. (1975). Kinetic studies on sex difference in susceptibility to chronic benzene intoxication — with special reference to body fat content. Brit. J. Ind. Med. 32, 321–328.Google Scholar
  28. Schwarz, M., Pearson, D., Buchmann A. and Kunz, W. (1989): The use of enzyme-altered foci for risk assessment in hepatocarcinogenesis. In: Biologically Based Methods for Cancer Risk Assessment, edited by C.C. Travis, NATO ASI Series A: Life Sciences Vol 159, Plenum Press, New York, 31–39.Google Scholar
  29. Srbova, J., Teisinger, J., and Skramovsky, S. (1950). Absorption and elimination of inhaled benzene in man. Arch. Ind. Hyg. Occup. Med. 2, 1–8.Google Scholar
  30. Teisinger, J., and Fiserova-Bergorova, V. (1955). Valeur comparée de la détermination des sulfates et du phénol contenus dans l’urine pour l’évaluation de la concentration du benzène dans l’air. Arch. Mal. Prof. Med. Trav. 16, 221–232.Google Scholar
  31. Travis, C. C., White, R. K., and Ward, R. C. (1990b). Interspecies extrapolation of pharmacokinetics. J. Theor. Biol. 142, 285–304.CrossRefGoogle Scholar
  32. U.S. Environmental Protection Agency (1985). Health Assessment Document for Tetrachloroethylene (Perchloroethylene). (Report #EPA/600/8-82/005F). Office of Research and Development, Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, USEPA.Google Scholar
  33. Ward, R. C., Travis, C. C., Hetrick, D. M., Andersen, M. E., and Gargas, M. L. (1988). Pharmacokinetics of tetrachloroethylene. Toxicol. Appl. Pharmacol. 93, 108–117.CrossRefGoogle Scholar
  34. Watanabe, K. H. (1993). Mathematical Modeling of Benzene Disposition: A Population Perspective, Ph.D. dissertation, University of California, Berkeley.Google Scholar
  35. Watanabe, K. H., Bois, F. Y., Daisey, J. M., Auslander, D. M., and Spear, R. C. (1994). Benzene toxicokinetics in humans — bone marrow exposure to metabolites. Occupational and Environmental Medicine 51, 414–420.CrossRefGoogle Scholar
  36. Woodruff, T. J., Bois, F. Y., Auslander, D., and Spear, R. (1992). Structure and parametrization of pharmacokinetic models: Their impact on model predictions. Risk Anal. 12, 189–201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • E. G. Luebeck
    • 1
  • C. Travis
    • 2
  • K. Watanabe
    • 2
  1. 1.Fred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Tulane University Medical CenterNew OrleansUSA

Personalised recommendations