Skip to main content

Introduction

  • Chapter
  • 80 Accesses

Part of the book series: Nato · Challenges of Modern Society ((NATS,volume 23))

Abstract

Chemical carcinogens represent a variety of (classes of) substances that are present in different media and compartments, which are determined by their sources, applications and use. With respect to dose-response assessment, within the context of quantitative risk assessment (QRA), these carcinogens are evaluated by various bodies, either on a national or international basis or both. For those chemicals present in air and water, an international harmonization of this risk evaluation is strived for by the Quality Guidelines of the World Health Organization (WHO, 1987, 1993). The same holds for food additives, contaminants, and pesticides, allowable levels of which are based on ADIs (allowable daily intakes) determined by the FAO/WHO committees JECFA and JMPR, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armitage P. (1985): Multistage Models of Carcinogenesis, Environmental Health perspectives, 63, 195–201.

    Article  CAS  Google Scholar 

  • Ashby J. and Tennant R.W. (1988): Chemical structure, Salmonella mutagenicity, extent of carcino-genicity as indicators of genotoxic carcinogens among 222 chemicals tested in rodents by the U.S. NCI/NTP, Mutation Research, 204, 17–115.

    Article  CAS  Google Scholar 

  • Ashby J., Tenant R.W., Zeiger E., and Stasiewicz S. (1989): Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 42 chemicals tested for carcinogenicity by the U.S. National Toxicology Program, Mutation Research, 223, 73–103.

    Article  CAS  Google Scholar 

  • Auton T.R. (1994): Calculation of benchmark doses from teratology data, Regul. Toxicol. Pharmacol., 19, 152–167.

    Article  CAS  Google Scholar 

  • Bernstein L., Gold L.S., Ames B.N., Pike M.C. and Hoel D.G. (1985): Some tautologous aspects of the comparison of carcinogenic potency in rats and mice, Fundamentals of Applied Toxicology, 5, 79–86.

    Article  CAS  Google Scholar 

  • Bogen K.T. (1989): Cell proliferation kinetics and Multistage cancer risk models, Journal of the national Cancer Institute, 81, 4, 267–277.

    Article  CAS  Google Scholar 

  • Butterworth B.E., and Goldsworthy T.L. (1991): The role of cell proliferation in multistage carcinogenesis, Proceedings of the Soc. of Experimental Biology and Medicine, 198, 683–687.

    CAS  Google Scholar 

  • Carnevale F., Montesano R., Partensky C. and Tomatis L. (1987): Comparison of regulations on occupational carcinogens in several industrialized countries. Am. J. Industr. Medicine, 12, 453–473.

    Article  CAS  Google Scholar 

  • Cogliano V.J. (1986): The U.S. EPA’s methodology for adjusting the reportable quantities of potential carcinogens. Proceedings of the 7th National Conference on Management of Uncontrolled Hazardous Wastes (Superfund ′86). Washington: Hazardous Materials Control Research Institute, 182–185.

    Google Scholar 

  • Cohen S.M. and Ellwein L.B. (1990): Cell proliferation ion carcinogenesis, Science, 249, 1007–1011.

    Article  CAS  Google Scholar 

  • Cohen S.M., and Ellwein L.B. (1991): Genetic errors, cell proliferation, and carcinogenesis, Cancer Research, 51, 6493–6505.

    CAS  Google Scholar 

  • Crump K.S. (1984): A new method for determining allowable daily intakes, Fundamental and applied toxicology, 4, 854–871.

    Article  CAS  Google Scholar 

  • Crump K.S. and Howe R.B. (1984): The multistage model with a time-dependent dose pattern: applications to carcinogenic risk assessment. Risk Analysis 4(3), 163–176.

    Article  Google Scholar 

  • DK (1991): Quantitative Risk Analysis for Carcinogens, National Food Agency of Denmark, Institute of Toxicology, Kopenhagen.

    Google Scholar 

  • EU (1991): Classification on the basis of specific effects to human health. Official Journal of the European Communities, No.L 180 (8-7-91).

    Google Scholar 

  • EU (1993): Commission Directive 93/67/EEC: Laying Down the Principles for the Assessment of Risks to Man and the Environment of Substances Notified in Accordance with Council Directive 67/548/EEC, July 20.

    Google Scholar 

  • EU (1995): Guidelines for setting specific concentrations limits for carcinogens in Annex I of Directive 67/548/EEC, Inclusion of potency considerations. Commission Working Group on the Classification and Labeling of Dangerous Substances, Draft.

    Google Scholar 

  • FRG (1993): Basisdaten Toxikologie für umweltrelevante Stoffe zur Gefahrenbeurteilung bei Altlasten, Berichte 4/93 (Eds. M. Hassauer, F. Kalberlah, J. Oltmanns and K. Schneider). Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktor Sicherheit, Erich Schmidt Verlag, Berlin.

    Google Scholar 

  • FIKS (1994): Guidelines for the Scientific evaluation of carcinogens (Eds. T. Sanner and E. Dybing), State Pollution Control Authority & Directorate of Labour Inspection’s scientific group for identification of carcinogens, Norway.

    Google Scholar 

  • Gaylor D.W. and Kodell R.L. (1980): Linear interpolation algorithm for low-dose risk assessment of toxic substances, Journal of Environmental Pathology and Toxicology, 4, 305–312.

    CAS  Google Scholar 

  • Gaylor D.W. (1993): Quantitative risk assessment for quantal reproductive and developmental effects, Environmental Health Perspectives, 79, 243–246.

    Article  Google Scholar 

  • Gold L.S., Sawyer C.B., Magaw R., Backman G.M., de Veciana M., Levinson R., Hooper N.K., Haven-der W.R., Bernstein L., Peto R., Pike M.C. and Ames B.N. (1984): A carcinogenic potency database of the standardized results of animal bioassays, Environmental Health Perspectives, 58, 9–322.

    Article  CAS  Google Scholar 

  • Gold L.S., Slone T.H., Backman G.M., Magaw R., Lopipero P., Blumenthal M., and Ames B.N. (1987): Second chronological supplement to the Carcinogenic Potency Database: Standardized results of animal bioassays published through December 1984 and by the National Toxicological Program through May, 1986, Environmental Health Perspectives, 74, 237–329.

    Article  CAS  Google Scholar 

  • Gold L.S., Slone T.H., and Bernstein L. (1989): Summary of carcinogenic potency and positivity for 492 rodent carcinogens in the carcinogenic potency database, Environmental Health Perspectives, 79, 259–272.

    Article  CAS  Google Scholar 

  • IARC — International Agency for Research on Cancer (WHO) (1986): Statistical Methods in Cancer Research, Volume III: The design and analysis of long-term animal experiments, IARC, Lyon.

    Google Scholar 

  • Kramers P.G.N., Knaap A.G.A.C., van der Heijden C.A., Taalman R.D.F.M. and Mohn G.R. (1991): Role of genotoxicity assays in the regulation of chemicals in The Netherlands. Mutagenesis, 6, 487–493.

    Article  CAS  Google Scholar 

  • Krewski D., Sziskowicz M., and Rosenkranz H. (1990): Quantitative factors in chemical carcinogenesis: Variation in carcinogenic potency, Regul. Toxicol. Pharmacol., 12, 13–29.

    Article  CAS  Google Scholar 

  • Luebeck E.G. and Moolgavkar, S.H. (1991): Stochastic description of initiation and promotion in experimental carcinogenesis, in Galli G., Rossi L., Vineis P., and Zapponi G.A. (eds): Risk assessment of chemical carcinogens, Annali Istituto Superiore di Sanità, 27, 4, 575–580.

    Google Scholar 

  • Machuga E.J., Pauli G.H., and Rulis A.M. (1992): A threshold of regulation policy for food-contact articles, Food Control, Vol.3, 4, 180–182.

    Article  Google Scholar 

  • Mantel, N. and Bryan, W.R. (1961): Safety testing of carcinogenic agents. J.Natl. Cancer Inst., 27, 455–470.

    CAS  Google Scholar 

  • Metger B., Crouch E., and Wilson R. (1989): On the relationship between carcinogenicity and acute toxicity, Risk Analysis, Vol.9, 2, 169–177.

    Article  Google Scholar 

  • Monticello T.M., and Morgan K.T. (1993): Cell proliferation and formaldehyde-induced respiratory carcinogenesis, Risk Analysis, 14, 3, 313–319.

    Article  Google Scholar 

  • Moolenaar, R.J. (1994): Carcinogen Risk assessment: International comparison. Regul. Toxicol. Pharmacol., 20, 302–336.

    Article  CAS  Google Scholar 

  • Moolgavkar S.H. and Venzon D.J. (1979): Two-event models for carcinogenesis: incidence curves for childhood and adult tumors. Mathematical Biosciences, 47, 55–77.

    Article  Google Scholar 

  • Moolgavkar S.H. and Knudson A.G. Jr. (1981): Mutation and cancer: a model for human carcinogenesis. J. Natl. Cancer Inst., 55, 1032–1052.

    Google Scholar 

  • NHC (1978): Health Council of The Netherlands (Gezondheidsraad), Commissie Beoordeling carcino-geniteit van chemische Stoffen. Advies inzake de beoordeling van carcinogeniteit van chemische Stoffen. No. 1987/19, Rijswijk.

    Google Scholar 

  • NHC (1994): Risk assessment of carcinogenic chemicals in The Netherlands. Health Council of The Netherlands (Gezondheidsraad), Committee on the Evaluation of the Carcinogenicity of Chemical Substances. Regul. Toxicol. Pharmacol., 19, 14–30.

    Article  Google Scholar 

  • NRC (National Research Council) (1983): Risk Assessment in the Federal Government: Managing the Process. Washington: National Academy Press.

    Google Scholar 

  • NRC (National Research Council) (1993): Issues in risk assessment. Washington: National Academy Press.

    Google Scholar 

  • NRC (National Research Council) (1994): Science and Judgment in Risk Assessment. Washington: National Academy Press.

    Google Scholar 

  • Okey A.B., Riddick D.S., and Harper P.A. (1994): The Ah receptor: Mediator of the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds, Toxicology Letters, 70, 1–22.

    Article  CAS  Google Scholar 

  • Parodi S., Taningher M., Baero P., and Santi L. (1982): Quantitative correlations amongst alkaline DNA fragmentation, DNA covalent binding, mutagenicity in the Ames test and carcinogenicity, for 21 compounds, Mutation Research, 93, 1–24.

    Article  CAS  Google Scholar 

  • Peto R., Pike M.C., Bernstein I., Gold L.S., and Ames B.N. (1984): The TD50: A proposed general convention for the numerical description of the carcinogenic potency of chemicals in chronic exposure animal experiments, Environmental Health Perspectives, 59, 1–8.

    Google Scholar 

  • Portier C.J. and Kopp-Schneider A. (1991): A multistage model of carcinogenesis incorporating DNA damage and repair, Risk Analysis, 11, 3, 535–543.

    Article  CAS  Google Scholar 

  • Preston-Martin S., Pike M.C., Ross R.K., Jones P.A., and Henderson B.E. (1990): Increased cell division as a cause of human cancer, Cancer Research, 50, 7415–7421.

    CAS  Google Scholar 

  • Reichard E., Cranor C., Raucher R., and Zapponi G. (1990): Groundwater contamination risk assessment. A guide to understanding and managing uncertainties, International Association of the Hydrological Science (IAHS) Publications, Wallingford, Oxfordshire, U.K.

    Google Scholar 

  • Rulis A.M. (1986): De minimis and the threshold of regulation, Food protection technology (C.W. Felix Ed.), 29–37, Lewis Publishers, Chelsea, MI.

    Google Scholar 

  • Sawyer C., Peto R., Bernstein L., and Pike M.C. (1984): Calculation of carcinogenic potency from long-term animal carcinogenic experiments, Biometrics, 40, 27–40.

    Article  CAS  Google Scholar 

  • SFT (1986): Potency Ranking of Carcinogenic substances. Report from a Nordic Working Party. Nordisk Ministerrd. Miljorapport 1985: 4E, The State Pollution Control Authority, Oslo.

    Google Scholar 

  • Travis C.C., Richter Pack S.A., Saulsbury A.W., and Yambert M.W. (1990): Prediction of carcinogenic potency from toxicological data, Mutation Research, 241, 21–36.

    Article  CAS  Google Scholar 

  • Travis C.C., and Belefant H. (1992): Promotion as a factor in carcinogenesis, Toxicology Letters, 60, 1–9.

    Article  CAS  Google Scholar 

  • UK (1991): Guidelines for the Evaluation of Chemicals for Carcinogenicity, Report on Health and Social Subjects No.42. Committee on Carcinogenicity of Chemicals in Food, Consumer Products and the Environment, Department of Health.

    Google Scholar 

  • U.S. EPA (United States Environmental Protection Agency) (1980): Water quality criteria documents; availability. Federal Register 45(231), 79318–79379.

    Google Scholar 

  • U.S. EPA (1986): Guidelines for carcinogen risk assessment. Federal Register, 33992–34003.

    Google Scholar 

  • U.S. EPA (1988): Methodology for evaluating potential carcinogenicity in support of reportable quantity adjustments pursuant to CERCLA section 102. Washington: U.S. EPA, EPA/600/8-89/053.

    Google Scholar 

  • U.S. EPA (1994): Technical background document to support rulemaking pursuant to the Clean Air Act section 112(g): ranking of pollutants with respect to hazard to human health. Research Triangle Park, NC: U.S. EPA, EPA 450/3 92 010.

    Google Scholar 

  • U.S. EPA Integrated Risk Information Service — IRIS, EPA File on Line, 1995, U.S. EPA, Washington D.C.

    Google Scholar 

  • U.S. EPA Office of Water (1992): Drinking water regulations and health advisories, U.S. EPA, Washington.

    Google Scholar 

  • Van Ryzin J. (1980): Quantitative risk assessment, Journal of Occupational Medicine, 22, 321–326.

    Article  Google Scholar 

  • WHO (1987): Air Quality Guidelines for Europe. WHO Regional Office for Europe, Regional Publications, European Series No.23, Copenhagen.

    Google Scholar 

  • WHO (1993): Guidelines for Drinking-water Quality, 2nd ed. Vol.1. Recommendations. Geneva.

    Google Scholar 

  • Zapponi G.A., Attias L. and Marcello I. (1994): Dose-response analysis and low-dose risk assessment for carcinogenic and non-carcinogenic chemicals: some common criteria, ISS-IAHS International Symposium Assessing and managing health risks from drinking water contamination: approaches and applications, Rome, September 13-17, 1994, Abstract Book.

    Google Scholar 

  • Zeise L., Wilson R., and Crouch E. (1984): Use of acute toxicity to estimate carcinogenic risk, Risk Analysis, 4, 187–199.

    Article  Google Scholar 

  • Zeise L., Crouch E.A.C., and Wilson, R. (1986): A possible relationship between toxicity and carcinogenicity, Journal of the American College of Toxicology, 137–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cogliano, V.J., Kroese, E.D., Zapponi, G.A., Attias, L., Marcello, I. (1999). Introduction. In: Cogliano, V.J., Luebeck, E.G., Zapponi, G.A. (eds) Perspectives on Biologically Based Cancer Risk Assessment. Nato · Challenges of Modern Society, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4741-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4741-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7149-6

  • Online ISBN: 978-1-4615-4741-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics