Pathophysiology of Bacterial Cystitis

  • James A. Roberts
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 462)


Most bacterial urinary tract infections (UTI) occur by the ascending route and are due to bacteria that normally colonize the patient’s gastrointestinal tract. While 80 to 90% of UTI are due to Escherichia coli 1, in young women a gram positive organism, Staphylococcus saprophyticus may cause up to 20% of the cases of acute cystitis.2 Hospital-acquired infections associated with catheters or instrumentation, however, are more frequently due to bacterial species such as Enterobacter, Klebsiella, Proteus, or Pseudomonas. Colonization of both squamous and urothelial cells due to bacterial adhesion is necessary to initiate an ascending infection. After colonization of the perineum for various periods of time, colonization of the urethra, then bladder occurs by means of bacterial adherence. In this review I will concentrate on the pathogenesisof E. coli cystitis. Adherence by E. coli is due to P, X or type 1 fimbriae as well as non-fimbrial adhesins.3,4 Cystitis may ensue once colonization of the bladder occurs and the bacteria remain for a time sufficient enough to reach a critical concentration necessary to cause disease. Twenty percent of females will have a urinary tract infection at some time during their lives, while twenty per cent of those who develop one infection will have a recurrence. Women may be susceptible due to genetic factors since it has been shown that those who do not have blood group antigens in their secretions (which may interfere with bacterial adhesion) more frequently have urinary tract infections.5


Urinary Tract Infection Cynomolgus Monkey Bacterial Adhesion Urothelial Cell Asymptomatic Bacteriuria 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kunin, CM. Editor: Urinary Tract Infections. 5th edition, Wms & Wilkins, Baltimore: PP6–7, 1997.Google Scholar
  2. 2.
    Wallmark, G., Arremark, I., Telander, B.: Saprophytics saprophyticis: a frequent cause of acute urinary tract infection among female outpatients. J. Infect.Dis.,138: 791, 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    Johnson, J.R.: Virulence factors in Escherichia coli urinary tract infection. Clin.Microbiol. Rev., 4: 80, 1991.PubMedGoogle Scholar
  4. 4.
    Roberts, J.A.: Tropism in bacterial infectionsrurinary tract infections. J. Urol., 156: 1552, 1996.PubMedCrossRefGoogle Scholar
  5. 5.
    Sheinfeld, J., Schaeffer, A.J., Cardon-Cardo C, Rogatko, A., and Fair, W.R.: Association of the Lewis blood-group phenotype with recurrent urinary tract infections in women. N. Engl. Med., 320: 773, 1989.CrossRefGoogle Scholar
  6. 6.
    Svanborg-Eden, C, Lidin-Janson, G. and Lindberg, V: Adhesiveness to urinary tract epithelial cells of fecal and urinary tract isolated from patients with symptomatic urinary tract infections or asymptomatic bac-teriuria of varying duration. J. Urol., 122: 185, 1979.Google Scholar
  7. 7.
    Stamey, T.A., Timothy, M., Miller, M. and Mihara, G.: Recurrent urinary infections in adult women. The role of introital Enterobacteriaceae. Calif. Med., 115: 1,1971.PubMedGoogle Scholar
  8. 8.
    Gordon, D.M. and Riley, M.A.: A theoretical and experimental analysis ofbacterial growth in the bladder. Molec. Microbiol., 6: 555, 1992.CrossRefGoogle Scholar
  9. 9.
    Andersson, R, Egberg, I., Lidin-Jansson, G., Lincoln, K., Hull, R., Hull, S. and Svanborg, C: Persistence of Escherichia coli bacteriuria is not determined bybacterial adherence. Infect. Immun., 59: 2915, 1991.PubMedGoogle Scholar
  10. 10.
    Cox, C.E., Hinman, F. Jr.: Experiments with induced bacteriuria, vesical emptying and bacterial growth on the mechanism of bladder defense to infection. J. Urol., 86: 739, 1961.PubMedGoogle Scholar
  11. 11.
    Schulte-Wisserman, H., Mannhardt, W., Schwartz J, Zepp F. and Bitter-Suermann, D.: Comparison of the antibacterial effect of uroepithelial cells from healthydonors and children with asymptomatic bacteriuria. Eur. J.Pediatr., 144: 230, 1985.CrossRefGoogle Scholar
  12. 12.
    Schlegel, J.U., Cuellar, J., Odell, R.M.: Bactericidal effect of urea. J. Urol., 86: 819, 1961.PubMedGoogle Scholar
  13. 13.
    Rijnaarts, H.H.M., Norde, W., Bouwer, E.J., Lyklema, J. and Zehnder, A.J.B.: Reversibility and mechanism ofbacterial adhesion. Colloids and Surfaces: Biointerfaces, 4: 5,1995.CrossRefGoogle Scholar
  14. 14.
    Jones, G.W. and Isaacson, R.E.: Proteinaceous bacterial adhesins and their receptors. CRC Crit. Rev. Microbiol., 10: 229, 1983.CrossRefGoogle Scholar
  15. 15.
    Duguid, J.P., Smith, I.W., Dempster, G. and Edmunds, P.N.: Nonflagellar filamentous appendages (“fimbriae”) and haemagluttinating activity in bacterium coli. J. Pathol. Bacteriol., 70: 335, 1955.PubMedCrossRefGoogle Scholar
  16. 16.
    Brinton, C.C. Jr.: The structure, function, synthesis and genetic control ofbacterial pili and a molecular mechanism for DNA and RNA transport in gram-negative bacteria. Trans. NY Acad. Sei., 27: 1003, 1965.CrossRefGoogle Scholar
  17. 17.
    Hovelius, B and Mardh, P.A. Staphylococcus saprophyticus as a common cause of urinary tract infection. Rev.Infect.Dis. 6: 328, 1984.PubMedCrossRefGoogle Scholar
  18. 18.
    Gatermann, S., John, J. and Marre, R.: Cloning and expression of Staphylococcus saprophyticus urease gene sequences in Staphylococcus canosus andcontribution of the enzyme to virulence. Infec.Immun., 57: 2998, 1989.Google Scholar
  19. 19.
    Meyer, H.W., Wengler-Becker, U., and Gatermann, S.G.: The hemagglutinin of Staphylococcus saprophyticus Is a Major adhesin for uroepithelial cells. Infect. Immun., 64: 3893, 1996.PubMedGoogle Scholar
  20. 20.
    Gatermann, S., and Meyer, H. Staphyloccus saprophyticus hemagglutinin binds fibronectin. Infect. Immun. 62:4556, 1994.PubMedGoogle Scholar
  21. 21.
    Ofek, I., Mirelman, D. and Sharon, N.: Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature, 265: 623, 1977.PubMedCrossRefGoogle Scholar
  22. 22.
    Svanborg Edén, C, Hanson, L.Å., Jodal, U. and Lindberg, U.: Variable adherence to normal human urinary-tract epithelial cells of Escherichia coli strains associated with various forms of urinary tract infection. Lancet, 2: 490, 1976.CrossRefGoogle Scholar
  23. 23.
    Källenius, G. and Möllby, R.: Adhesion of Escherichia coli to human periurethral cells correlated to man-nose-resistant agglutination of human erythrocytes. FEMS Microbiol. Lett., 5: 295,1979.CrossRefGoogle Scholar
  24. 24.
    Korhonen, T.K., Virkola, R., Westerlund, B., Holthofer, H. and Parkkinen, J.: Tissue tropism of Escherichia coli adhesins in human extraintestinal infections. Curr. Top. Microbiol. Immunol., 151: 115, 1990.PubMedCrossRefGoogle Scholar
  25. 25.
    Källenius, G., Möllby, R., Svenson, S.B., Winberg, J. and Hultberg, H.: Identification of a carbohydrate receptor recognized by uropathogenic Escherichia coli. Infection, 8: 288, 1980.PubMedCrossRefGoogle Scholar
  26. 26.
    Leffler, H. and Svanborg-Edén, CS.: Chemical identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary tract epithelial cells and agglutinating human erythrocytes. FEMS Microbiol. Lett., 8: 127, 1980.CrossRefGoogle Scholar
  27. 27.
    Nowicki, B., Labigne, A., Moseley, S., Hull, R., Hull, S., and Moulds, J.: The Dr hemagglutinin, afimbrial adhesins AFA-I and AFA-III, and F1845 fimbriae of uropathogenic and diarrhea-associated Eschericha coli belong to a family ofhemagglutinins with Dr receptor recognition. Infect. Immun., 58: 279, 1990.PubMedGoogle Scholar
  28. 28.
    Labigne-Rousse, L A., Lark, D., Schoolnik, G., and Falkow, S.: Cloning and expression of an afimbrial adhesin (AFA-I) responsible for P-blood-group independent mannose resistant hemagglutination from a pyelonephritic Escherichia coli strain. Infect. Immun., 46: 251, 1984.Google Scholar
  29. 29.
    Stromberg, N., Marklund, B,-I., Lund, B., liver, D., Hamers, A, Gaastr, W., Karlson, KA., and Normark, S.: Host-specificity of uropathogenic Escherichiacoli depends on difference in binding specificity to Gal 1–4 Gal containing isoreceptors. EMBO J., 9: 2001, 1990.Google Scholar
  30. 30.
    Achtman, M. and Pluschke, G.: ClOonal anlysis of descent and virulence among selected Escherichia coli. Ann Rev. Microbiol., 40: 184, 1986.CrossRefGoogle Scholar
  31. 31.
    Plos, K., Hull, S.I., Hull, R.A., Levin, B.R., Orskov, I., Orskow, F. and Svanborg-Eden, C: Distribution of the P-associated-pilus (pap) region amongEscherichia coli from natural sources: Evidence for horizontal gene transfer. Infect. Immun., 57: 604, 1989.Google Scholar
  32. 32.
    Kuehn, M.J., Ogg, D.J., Kihlberg, J., Slonim, L.N., Flemmer, K., Bergfors, T. and Hultgren, S.J.: Structural basis of pilus subunit recognition by the PaPD chaperone. Science, 1262: 1234, 1993.CrossRefGoogle Scholar
  33. 33.
    Lindberg, F., Tennent, J.M., Hultgren, S.J., Lund, B. and Normark, S.: PapD, a periplasmic transport protein in P-pilus biogenesis. J. Bacteriol., 171: 6052, 1989.PubMedGoogle Scholar
  34. 34.
    Lund, B., Marklund, B.I., Stromberg, N., Lindberg, F., Karlsson, K.A. and Normark, S.: Uropathogenic Escherichia coli can express serologically identical pili of different receptor binding specificities. Molec. Microbiol., 2: 255, 1988.CrossRefGoogle Scholar
  35. 35.
    Hultgren, S.J., Abraham, S., Caparon, M., Falk, P., St Gerne, J.W. III, and Normark, S.: Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell, 73: 887, 1993.PubMedCrossRefGoogle Scholar
  36. 36.
    Kuehn, M., Heuser, J., Normark, S. and Hultgren, S.: P pili in uropathogenic E. coli are composite fibres with distinct fibrillar adhesive tips. Nature, 356: 252,1992.PubMedCrossRefGoogle Scholar
  37. 37.
    Marklund, B.I., Tennent, J., Garcia, E., Hamers, A., Baga, M., Lindberg, F., Gaastra, W. and Normark, S.: Horizonal gene transfer of the pap and prs pili Operons as a mechanism for the development of tissue specific adhesive properites. Molec. Microbiol., 6: 2225, 1992.CrossRefGoogle Scholar
  38. 38.
    Roberts, J.A., Marklund, B.-L, liver, D., Haslam, D., Kaack, M.B., Baskin, G., Louis, M., Möllby, R., Winberg, J. and Normark, S.: The Gal(l–4)Gal-specific tip adhesin of Escherichia coli P-fímbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc. Natl. Acad. Sei. USA, 91: 11889, 1994.CrossRefGoogle Scholar
  39. 39.
    Roberts, J.A., Kaack, B., Källenius, G., Möllby, R., Winberg, J. and Svenson, S.B.: Receptors for pyelonephritogenic Escherichia coli in primates. J. Urol., 131: 163, 1984.PubMedGoogle Scholar
  40. 40.
    Haslam, D.B., Boren, T., Falk, P., Iliver, D., Chou, A., Xu, Z. and Normark, S.: The amino-terminal domain of the P-pilus adhesin determines receptor specificity. Molec. Microbiol., 14: 399, 1994.Google Scholar
  41. 41.
    Schaeffer, A.J., Jones, J.M. and Dunn, J.K.: Association of in vitro Escherichia coli adherence to vaginal and buccal epithelial cells with susceptibilitity of women to recurrent urinary-tract infections. N. Engl. J. Med., 304: 1062, 1981.PubMedCrossRefGoogle Scholar
  42. 42.
    Schaeffer, A.J., Chmiel, J.S., Duncan, J.L. and Falkowski, W.S.: Mannose-sensitive adherence of Escherichia coli to epithelial cells from women with recurrent urinary tract infections. J. Urol., 131: 906, 1984.PubMedGoogle Scholar
  43. 43.
    Schaeffer, A.J., Schwan, W.R., Hultgren, S.J. and Duncan, J.L.: Relationship ofType 1 pilus expression in Escherichia coli to ascending urinary tract infections in mice. Infect. Immun., 55: 373, 1987.PubMedGoogle Scholar
  44. 44.
    Baddour, L.M., Christensen, G.D., Simpson, W.A. and Beachey, E.H.: In: Principles and Practice of Infectious Disease. Edited by G.L. Mandell, R.G. Danglers and J.E. Bennet. New York: Churchill Livingstone, vol 2, pp. 9–22,1989.Google Scholar
  45. 45.
    Balish, M., Jensen, J. and Uehling, D.T.: Bladder mucin: a scanning electron microscopy study in experimental cystitis. J. Urol., 128: 1060, 1982.PubMedGoogle Scholar
  46. 46.
    Schlager, T.A., Whittam, T.S, Hendley, J.O., Hollis, R.J., Pfaller, M.A., Wilson, R.A. and Stapelton, A.: Comparison of expression of virulence factors by Escherichia coli causing cystitis and E.coli colonizing the periurethra of healthy girls. J. Infect. Dis., 172: 772, 1995.PubMedCrossRefGoogle Scholar
  47. 47.
    Parkkinen, J., Virkola, R. and Korhonen, T.K.: Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins. Infect. Immun., 56: 2623, 1988.PubMedGoogle Scholar
  48. 48.
    Kisielius, P.V., Schwan, W.R., Amundsen, S.K., Duncan, J.L. and Schaeffer, AJ.:In vivo expression and variation of Escherichia coli Type 1 and P pili in theurine of adults with acute urinary tract infections. Infect. Immun., 57: 1656, 1989.PubMedGoogle Scholar
  49. 49.
    Foxman, B., Zhang, L., Palin, K., Tallman, P. and Marrs, C.F.: Bacterial virulence characteristics of Escherichia coli isolates from first-time urinary tract infection. J. Infect. Dis., 171: 1514, 1995.PubMedCrossRefGoogle Scholar
  50. 50.
    Yamamoto, S., Tsukamoto, T., Terai, A., Kurazono, H., Takeda, Y and Yoshida, O.: Distribution of virulence factors in Escherichia coli isolated from urine of cystitis patients. Microbiol. Immunol., 39: 401, 1995.PubMedGoogle Scholar
  51. 51.
    Arthur, M., Johnson, C.E., Rubin, R.H., Arbeit, R.D., Campanelli, C, Kim, C, Steinbach, S., Agarwal, M., Wilkinson, R. and Goldstein, R.: Molecular epidemiology of adhesin and hemolysin virulence factors among uropathogenic Escherichiacoli. Infect. Immun., 57: 303, 1989.PubMedGoogle Scholar
  52. 52.
    Schaeffer, A.J., Jones, J.M. and Dunn, J.K.: Association of in vitro Escherichia coli adherence to vaginal and buccal epithelial cells with susceptibilitity of womento recurrent urinary-tract infections. N. Engl. J. Med., 304: 1062, 1981.PubMedCrossRefGoogle Scholar
  53. 53.
    Venegas, M.F., Navas, E.L., Gaffney, R.A., Duncan, J.L., Anderson, B.E. and Schaeffer, A.J.: Binding of Type 1-piliated Escherichia coli to vaginal mucus. Infect. Immun., 63: 416, 1995.PubMedGoogle Scholar
  54. 54.
    Schaeffer, A.J., Venegas, M.F., Gaffney, R.A., Navas, E.L., Anderson, B.E., Chmiel, J.S. and Duncan, J.L.: Role of vaginal fluid in urinary tract infections (UTIs). Proc. A.U.A., 155: 674A, 1996.Google Scholar
  55. 55.
    Tewari, R.,MacGregor, J.I.,Ikeda, T., Little, S., Hultgren, S., and Abraham, S.N. Neutrophil activation by nascent FimH subunits of type 1 fimbriae purified from the periplasm of Escherichia coli. J. Biol. Chem. 268:3009, 1993PubMedGoogle Scholar
  56. 56.
    Mobley, H.L.T., Chippendale, G.R., Tenney, J.H., Hull, R.A. and Warren, J.W. Expression of Type 1 fimbriae may be required for persistence ofEscherichia coli in the catheterized urinary tract. J. Clin. Microbiol., 25: 2253, 1987.PubMedGoogle Scholar
  57. 57.
    Stamey, T.A. and Mihara, G.: Observations on the growth of urethral and vaginal bacteria in sterile urine. J. Urol., 124:4671, 1980.Google Scholar
  58. 58.
    Domingue, G.J. Bacterial Osmoprotection. J. Lab and Clin Med. 48: 53, 1991.Google Scholar
  59. 59.
    Domingue, A.L., Donnenberg, M.S., Cui X., Russell, R.G., Utsalo, S.J., Mobley, H.L.T., Warren, J.W.: Binding to and killing of human renal epithelial cells by hemolyticP-fimbriated E. coli. Kidney Int., 46: 1083, 1994.CrossRefGoogle Scholar
  60. 60.
    Parsons, C.L., Greeenspan, C. and Mulholland, S.G.: The primary antibacterial defense mechanism of the bladder. Invest.Urol.,13: 72, 1975.PubMedGoogle Scholar
  61. 61.
    Elliott, T.S.J., Slack, R.C.B. and Bishop, M.C.: Scanning electron microscopy of human bladder mucosa in acute and chronic urinary tract infection. Br. J. Urol.,56: 38, 1984.PubMedCrossRefGoogle Scholar
  62. 62.
    Elliott, T.S.J, Reed, L., Slack, R.C.B. and Bishop, M.C.: Bacteriology and ultrastructure of the bladder in patients with urinary tract infections. J. Infection., 11: 191, 1985.CrossRefGoogle Scholar
  63. 63.
    Gillon, G., Small, M., Medial, O. and Aronson, M.: Sequential study of bacterial clearance in experimental cystitis. J. Med. Microbiol., 18: 319, 1984.PubMedCrossRefGoogle Scholar
  64. 64.
    Suzuki, Y, Fukushi, Y., Orikasa, S. and Kumagai, K.: Opsonic effect of normal and infected human urine on phagocytosis ofEscherichia coli and yeasts byneutrophils. J. Urol., 127: 356, 1982.PubMedGoogle Scholar
  65. 65.
    Fukushi, Y and Orikasa, S.: The role of intravesical polymorphonuclear leukocytes in experimental cystitis. Investigative Urol., 18: 471, 1981.Google Scholar
  66. 66.
    Tewari, R., Ikeda, T., Malaviya, R., MacGregor, J.I., Little, J.R., Hultgren S. J. and Abraham, S.N.: The PagG tip adhesin of P fimbriae protects Escherichia coli from neutrophil bactericidal activity. Infec. Immun., 62: 5296, 1994.Google Scholar
  67. 67.
    Ofek, I., Mosek, A. and Sharon, N.: Mannose-specific adherence ofEscherichia coli freshly excreted in the urine of patients with urinary tract infections, and of isolates subcultured from the infected urine. In-fect.Immun., 34: 708, 1981.Google Scholar
  68. 68.
    Wu, Z.-R., Sun, T.-T. and Medina, J.J.: In vitro binding of type 1-fimbriated Escherichia coli to uroplakins la and lb: Relation to urinary tract infections. Proc. Natl. Acad. Sei. USA, 93: 9630, 1996.CrossRefGoogle Scholar
  69. 69.
    Winberg, J., Mollby, R., Bergstrom, J., Karlsson, R.A., Leonardsson, I., Mich, M.A., Teneberg, S., Haslam, B., Marklund, B.J. and Normark, J.: The Pap-G adhesin at the tip of P-fimbriae provides Escherichia coli with a competitive edge in experimental bladder infections of cynomolgus monkeys. J. Exp. Med., 182: 1695, 1995.PubMedCrossRefGoogle Scholar
  70. 70.
    Hagberg, L., Hull, R., Hull, S., Michalsek, S., McGhee, J.R., Svanborg-Eden, C: Differences in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infec. Immun., 46: 839, 1984.Google Scholar
  71. 71.
    Agace, W.W., Patarroyo, M., Svensson, M., Carlemalm, E., Svanborg, C: Escherichia coli induces tran-suroepithelial neutrophil migration by an intercellular adhesion molecule-1-dependent mechanism. Infect. Immun., 63: 4054, 1995.PubMedGoogle Scholar
  72. 72.
    Hedges, S., Andersson, P., Lidin-Janson, G., de Man, P. and Svanborg, C: Interleukin-6 response to deliberate colonization of the human urinary tract with gram-negative bacteria. Infect. Immun., 59: 421, 1991.PubMedGoogle Scholar
  73. 73.
    Agace, W., Hedges, S., Ceska, M. and Svanborg, C: Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J. Clin. Invest., 92: 780, 1993.PubMedCrossRefGoogle Scholar
  74. 74.
    Benson, M., Andreasson, A., Jodal U., Karlsson, Å., Rydberg, J. and Svanborg, C: Interleukin 6 response to urinary tract infection in childhood. Pediatr. Infect. Dis. J., 13: 612, 1994.PubMedCrossRefGoogle Scholar
  75. 75.
    Richards C, Gauldie J. and Baumann H.: Cytokine control of acute phase protein expression. Eur. Cytokine Network, 2: 89, 1991.Google Scholar
  76. 76.
    Billiau, A. and Vandekerckhove, F.: Cytokines and their interactions with other inflammatory mediators in the pathogenesis of sepsis and septic shock. Eur. J. Clin. Invest, 21: 559, 1991.PubMedCrossRefGoogle Scholar
  77. 77.
    Grisham, M.B., Hernandez, L.A. and Granger DN: Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am. J. Physiol., 251: G567, 1986.PubMedGoogle Scholar
  78. 78.
    Dinarello, CA.: Role of interleukin-1 in infectious diseases. Immuno. Rev., 127: 119, 1992.CrossRefGoogle Scholar
  79. 79.
    Patarroyo, M., Makgoba, M.W.: Leucocyte adhesion to cells in immune and inflammatory responses. Lancet, 2: 1139, 1989.PubMedCrossRefGoogle Scholar
  80. 80.
    Daimle, N.K. and Doyle, I.V.: Ability of human lymphocytes to adhere to vascular endothelial cells and to augment endothelial permeability to macromolecules is linked to their state of post-thymic maturation. J. Immunol., 144: 1233, 1990.Google Scholar
  81. 81.
    Roberts, J.A., Kaack, M.B. and Martin, L.N.: Cytokine and lymphocyte activation during experimental acute pyelonephritis. Urol. Res., 23: 33, 1995.PubMedCrossRefGoogle Scholar
  82. 82.
    Arnaout, M.A.: Cell adhesion molecules in inflammation and thrombosis: Status and prospects. Am. J. Kidney Dis., 21: 72, 1993.PubMedGoogle Scholar
  83. 83.
    Kaack, M.B., Dowling, K.J., Patterson, G.M. and Roberts, J.A.: Immunology of pyelonephritis VIII: E. coli causes granulocytic aggregation and renal ischemia. J. Urol., 136: 1117, 1986.PubMedGoogle Scholar
  84. 84.
    Roberts, J.A., Kaack, M.B., Fussel, E.F. and Baskin, G.: Immunology of pyelonephritis VII: Effect of al-lopurinol. J. Urol., 136: 960, 1986.PubMedGoogle Scholar
  85. 85.
    Hopkins, W.J., Uehling, D.T. and Balish, E.: Local and systemic antibody responses accompany spontaneous resolution of experimental cystitis in cynomolgus monkeys. Infec. Immun., 55: 1951, 1987.Google Scholar
  86. 86.
    Soderhall, M., Normark, S., Ishikawa, K., Ishikawa, K., Karlsson, K-A., Teneberg, S., Winberg J. and Mollby, R.: Induction of protective immunity after Escherichia coli bladder infection in primates. J. Clin. Invest., 100: 364, 1997.PubMedCrossRefGoogle Scholar
  87. 87.
    Langermann, S., Palaszynski, S., Barnhart, M., Auguste, G., Pinkner, J.S., Burlein, J., Barren, P., Koenig, S., Leath, S., Jones, C.H., and Hultgren, S.: Prevention of mucosal Escherichia coli infection by FimH-ad-hesin-based systemic vaccination. Science, 276: 607, 1997.PubMedCrossRefGoogle Scholar
  88. 88.
    Thankavel, K., Madison, B., Ikeda, T., Malaviya, R., Sham, A.H., Arumugam P.M. and Abraham, S.N.: Localization of a domain in the FimH adhesin of Escherichia coli Type 1 fimbriae capable of receptor recognition and use of adomain-specific antibody to confer protection against experimental urinary tract infection. J. Clin Invest., 100: 1123, 1997.PubMedCrossRefGoogle Scholar
  89. 89.
    Gareau, F.E., Macke, L. D.C., Boring, J.R., Payne, F.J. and Hämmert, F.L.: The acquisition of fecal flora by infants from their mothers during birth. J. Pediatr., 54: 313, 1959.PubMedCrossRefGoogle Scholar
  90. 90.
    Patrick, M.J.: Influence of maternal renal infection on the foetus and infant. Arch.Dis. Child., 42: 208, 1967.PubMedCrossRefGoogle Scholar
  91. 91.
    Piscane, A., Graziano, L., Mazzarella, G., Scapellino, B. and Zona, G. Breast feeding and urinary tract infection. J. Pediatr., 120: 87,1992.CrossRefGoogle Scholar
  92. 92.
    Herthelius, M., Möllby, R., Nord, CE. and Winberg, J.: Amoxicillin promotes vaginal colonization with adhering Escherichia coli present in faeces. Pediatr. Nephrol., 3: 443, 1989.PubMedCrossRefGoogle Scholar
  93. 93.
    Hansson, S., Jodal, U., Lincoln, K. and Svanborg-Ede, C: Untreated asymptomatic bacteriuria in girls: Effect of Phenoxymethylpenicillin and erythromycin given for intercurrent infections. Br. Med. J., 298: 256,1989.Google Scholar
  94. 94.
    Ginsburg, C and McCracken, G.H., Jr.: Urinary tract infections in young infants. Pediatrics, 69: 409, 1982.PubMedGoogle Scholar
  95. 95.
    Plos K, Connell H, Jodal U, Marklund B-I, Marild S, Wettergren B. and Svanborg, C: Intestinal carriage of P fimbriated Escherichia coli and the susceptibility tourinary tract infection in young children. J. Infec. Dis., 171: 625, 1995.CrossRefGoogle Scholar
  96. 96.
    Lomberg, H., Hellstrom, M., Jodal, U. and Svanborg-Edén C: Secretor state and renal scarring in girls with recurrent pyelonephritis. FEMS Microbiol. Immunol., 47: 371, 1989.Google Scholar
  97. 97.
    Sheinfeld, J., Schaeffer A.J., Cordon-Cardo, C, Rogatko, A. and Fair, W.R.: Association of the Lewis blood-group phenotype with recurrent urinary tractinfections in women. N. Engl. J. Med., 320: 773, 1989.PubMedCrossRefGoogle Scholar
  98. 98.
    Navas E.L., Venegas, M.F., Duncan, J.L., Anderson, B.E., Kanerva, C, Chmiel, J.S., and Schaeffer AJ.: Blood group antigen expression on vaginal cells andmucus in women with and without a history of urinary tract infections. J. Urol., 152: 345, 1994.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • James A. Roberts
    • 1
    • 2
  1. 1.Tulane Regional Primate Research CenterCovingtonUSA
  2. 2.Tulane University School of MedicineNew OrleansUSA

Personalised recommendations