Advertisement

Contractile Protein Changes in Urinary Bladder Smooth Muscle Following Outlet Obstruction

  • Samuel Chacko
  • Michael DiSanto
  • Chandrakala Menon
  • Yongmu Zheng
  • Joseph Hypolite
  • Alan J. Wein
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 462)

Abstract

Force production by the bladder body smooth muscle and relaxation of the bladder outlet, required for bladder emptying, are regulated by Ca2+ via myosin light chain (MLC) phosphorylation by a Ca2+-calmodulin-dependent MLC kinase (for review, 1–3). Besides this mode of regulation, evidence from most laboratories, including ours, supports the existence of a thin-filament-mediated regulation due to protein-protein interaction by actin-binding proteins acting in concert with tropomyosin and a calcium-binding protein, most likely, calmodulin. Caldesmon (CaD), a thin-filament-associated protein, inhibits the ac-tin-myosin interaction and actomyosin ATPase, and this inhibition is reversed by calmodulin in the presence of Ca2+.3–5 Urinary bladder outlet obstruction interferes with the ability of the bladder to empty its contents, thereby inducing changes in the bladder wall smooth muscle cells which enable the bladder to produce the increased contractile force required to expel urine through the obstructed urethra. In the initial phases of outlet obstruction, there is transient decompensation of the bladder smooth muscle, which initiates the molecular events that lead to hypertrophy of the detrusor smooth muscle cells enabling it to generate and maintain force. However, continuation of the outlet obstruction induces molecular, cellular, and structural alterations in the muscle cells of the bladder wall, leading ultimately to decreased compliance and impaired emptying. The ability of smooth muscles to compensate for increased functional demand is associated with alterations in the expression of proteins in the thick- and thin-filaments.

Keywords

Smooth Muscle Myosin Heavy Chain Outlet Obstruction Myosin Light Chain Myosin Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adelstein, R.S. and Eisenberg, E.: Regulation and kinetics of the actin-myosin-ATP interaction. [Review]. Annu. Rev. Biochem., 49: 921, 1980.PubMedCrossRefGoogle Scholar
  2. 2.
    Kamm, K.E. and Stull, J.T.: The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. [Review]. Ann. Rev. Pharmacol. Toxicol., 25: 593, 1985.CrossRefGoogle Scholar
  3. 3.
    Chacko, S. and Longhurst, P.A.: Regulation of actomyosin and contraction in smooth muscle. [Review]. World J. Urol., 12: 292, 1994.PubMedCrossRefGoogle Scholar
  4. 4.
    Marston, S.B. and Redwood, C.S.: The molecular anatomy of caldesmon. [Review] [189 refs]. Biochem. J., 279: 1, 1991.PubMedGoogle Scholar
  5. 5.
    Sobue, K. and Sellers, J.R.: Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. [Review] [89 refs]. J. Biol. Chem., 266: 12115, 1991.PubMedGoogle Scholar
  6. 6.
    Ebashi, S. The Croonian lecture, 1979: Regulation of muscle contraction. Proc. R. Soc. Lond. — Series B: Biol. Sci., 207: 259, 1980.CrossRefGoogle Scholar
  7. 7.
    Chacko, S. and Longhurst, P.A.: Contractile proteins and their response to bladder outlet obstruction. [Review]. Adv. Exp. Med. Biol., 385: 55, 1995.PubMedGoogle Scholar
  8. 8.
    Huxley, H.E. and Kress, M.: Crossbridge behaviour during muscle contraction. [Review] [28 refs]. J. Muscle Res. Cell Motil., 6: 153, 1985.PubMedCrossRefGoogle Scholar
  9. 9.
    Nonomura, Y. and Ebashi, S.: Calcium regulatory mechanism in vertebrate smooth muscle. Biomed. Res., 1: 1, 1980.Google Scholar
  10. 10.
    Parry, D.A. and Squire, J.M.: Structural role of tropomyosin in muscle regulation: analysis of the x-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol., 75: 33, 1973.PubMedCrossRefGoogle Scholar
  11. 11.
    Chacko, S., Rosenfeld, A., and Thomas, G.: Calcium regulation of smooth muscle actomyosin. In: Calcium and contractility. Edited by A.K. Grover and E.E. Daniel, Clifton, NJ: Humana Press, pp. 175–190,1985.CrossRefGoogle Scholar
  12. 12.
    Fay, F.S., Shlevin, H.H., Granger, W.C., and Taylot, S.R.: Aequorin luminescence during activation of single isolated smooth muscle cells. Nature, 280: 506, 1979.PubMedCrossRefGoogle Scholar
  13. 13.
    Somlyo, A.P. and Somlyo, A.V.: Signal transduction and regulation in smooth muscle [published erratum appears in Nature 1994 Dec 22–29; 372 (6508): 812]. [Review]. Nature, 372: 231, 1994.PubMedCrossRefGoogle Scholar
  14. 14.
    Hartshorne, D.J.: Physiology of the gastrointestinal tract, 2nd ed. New York, Raven, 1987.Google Scholar
  15. 15.
    Kendrick-Jones, J., Cande, W.Z., Tooth, P.J., Smith, R.C., and Scholey, J.M.: Studies on the effect of phosphorylation of the 20,000 Mr light chain of vertebrate smooth muscle myosin. J. Mol. Biol., 165: 139, 1983.PubMedCrossRefGoogle Scholar
  16. 16.
    Suzuki, H., Onishi, H., Takahashi, K., and Watanabe, S.: Structure and function of chicken gizzard myosin. J. Biochem.(Tokyo), 84: 1529, 1978.PubMedGoogle Scholar
  17. 17.
    Trybus, K.M. Filamentous smooth muscle myosin is regulated by phosphorylation. J. Cell Biol., 109: 2887, 1989.PubMedCrossRefGoogle Scholar
  18. 18.
    Chacko, S., Conti, M.A., and Adelstein, R.S.: Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc. Natl. Acad. Sci. U.S.A., 74: 129, 1977.PubMedCrossRefGoogle Scholar
  19. 19.
    Gorecka, A., Aksoy, M.O., and Hartshorne, D.J.: The effect of phosphorylation of gizzard myosin on actin activation. Biochem. Biophys. Res. Commun., 71: 325, 1976.PubMedCrossRefGoogle Scholar
  20. 20.
    Sellers, J.R., Pato, M.D., and Adelstein, R.S.: Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J. Biol. Chem., 256: 13137, 1981.PubMedGoogle Scholar
  21. 21.
    Sobieszek, A. and Small, J.V.: Regulation of the actin-myosin interaction in vertebrate smooth muscle: activation via a myosin light-chain kinase and the effect of tropomyosin. J. Mol. Biol., 112: 559, 1977.PubMedCrossRefGoogle Scholar
  22. 22.
    Barany, M. and Barany, K.: Phosphorylation of the myofibrillar proteins. Ann. Rev. Physiol., 42: 275, 1980.CrossRefGoogle Scholar
  23. 23.
    Butler, T.M., Siegman, M.J., and Mooers, S.U.: Chemical energy usage during shortening and work production in mammalian smooth muscle. Am. J. Physiol., 244: C234, 1983.PubMedGoogle Scholar
  24. 24.
    Dillon, P.F., Aksoy, M.O., Driska, S.P., and Murphy, R.A.: Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science, 211: 495, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Gerthoffer, W.T., Murphey, K.A., Mangini, J., Boman, S., and Lattanzio, F.A., Jr.: Myosin phosphorylation and calcium in tonic and phasic contractions of colonic smooth muscle. Am. J. Physiol., 260: G958, 1991.PubMedGoogle Scholar
  26. 26.
    Butler, T.M. and Siegman, M.J.: Chemical energy usage and myosin light chain phosphorylation in mammalian smooth muscle. Federation Proc., 42: 57, 1983.Google Scholar
  27. 27.
    Borovikov, Y.S., Khoroshev, M.I., and Chacko, S.: Comparison of the effects of calponin and a 38-kDa caldesmon fragment on formation of the “strong-binding” state in ghost muscle fibers. Biochem. Biophys. Res. Commun., 223: 240, 1996.PubMedCrossRefGoogle Scholar
  28. 28.
    Horiuchi, K.Y. and Chacko, S.: Effect of unphosphorylated smooth muscle myosin on caldesmon-mediated regulation of actin filament velocity. J. Muscle Res. Cell Motil., 16: 11, 1995.PubMedCrossRefGoogle Scholar
  29. 29.
    Pfitzer, G., Zeugner, C., Troschka, M., and Chalovich, J.M.: Caldesmon and a 20-kDa actin-binding fragment of caldesmon inhibit tension development in skinned gizzard muscle fiber bundles. Proc. Natl. Acad. Sci. U.S.A., 90: 5904, 1993.PubMedCrossRefGoogle Scholar
  30. 30.
    Horowitz, A., ClementChomienne, O., Walsh, M.P., Tao, T., Katsuyama, H., and Morgan, K.G.: Effects of calponin on force generation by single smooth muscle cells. Am. J. Physiol., 39: H1858, 1996.Google Scholar
  31. 31.
    Hemric, M.E. and Chalovich, J.M.: Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin. J. Biol. Chem., 263: 1878, 1988.PubMedGoogle Scholar
  32. 32.
    Wang, Z., Jiang, H., Yang, Z.Q., and Chacko, S.: Both N-terminal myosin-binding and C-terminal actin-binding sites on smooth muscle caldesmon are required for caldesmon- mediated inhibition of actin filament velocity. Proc. Natl. Acad. Sci. U.S.A., 94: 11899, 1997.PubMedCrossRefGoogle Scholar
  33. 33.
    Sutherland, C. and Walsh, M.P.: Phosphorylation of caldesmon prevents its interaction with smooth muscle myosin. J. Biol. Chem., 264: 578, 1989.PubMedGoogle Scholar
  34. 34.
    Malmqvist, U., Amer, A., Makuch, R., and Dabrowska, R.: The effects of caldesmon extraction on mechanical properties of skinned smooth muscle fibre preparations. Pflugers Arch., 432: 241, 1996.PubMedCrossRefGoogle Scholar
  35. 35.
    Chacko, S. and Longhurst, P.A.: Contractile proteins and their response to bladder outlet obstruction. In: Muscle, matrix, and bladder function. Edited by S.A. Zderic, New York: Plenum Press, pp. 55–63,1995.Google Scholar
  36. 36.
    Craig, R. and Megerman, J.: Assembly of smooth muscle myosin into side-polar filaments. J. Cell Biol., 75: 990, 1977.PubMedCrossRefGoogle Scholar
  37. 37.
    Harrington, W.F., Burke, M., and Barton, J.S.: Association of myosin to form contractile systems. Symposia on Quantitative Biology, XXXVII: 1972.Google Scholar
  38. 38.
    Somlyo, A.P., Devine, C.E., Somlyo, A.V., and Rice, R.V.: Filament organization in vertebrate smooth muscle. Phil. Trans. R. Soc. Lond. — Series B: Biol. Sci., 265: 223, 1973.CrossRefGoogle Scholar
  39. 39.
    Wachsberger, P.R. and Pepe, F.A.: Purification of uterine myosin and synthetic filament formation. J. Mol. Biol., 88: 385, 1974.PubMedCrossRefGoogle Scholar
  40. 40.
    Kamm, K.E. and Stull, J.T.: Myosin phosphorylation, force, and maximal shortening velocity in neurally stimulated tracheal smooth muscle. Am. J. Physiol., 249: C238, 1985.PubMedGoogle Scholar
  41. 41.
    Dreizen, P. and Gershman, L.C.: Relationship of structure to function in myosin. II. Salt denaturation and recombination experiments. Biochemistry, 9: 1688, 1970.PubMedCrossRefGoogle Scholar
  42. 42.
    Rayment, I., Rypniewski, W.R., Schmidt-Base, K., Smith, R., Tomchick, D.R., Benning, M.M., Winkelmann, D.A., Wesenberg, G., and Holden, H.M.: Three-dimensional structure of myosin subfragment-1: a molecular motor [see comments]. Science, 261: 50, 1993.PubMedCrossRefGoogle Scholar
  43. 43.
    Babij, P. and Periasamy, M.: Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J. Mol. Biol., 210: 673, 1989.PubMedCrossRefGoogle Scholar
  44. 44.
    Rovner, A.S., Thompson, M.M., and Murphy, R.A.: Two different heavy chains are found in smooth muscle myosin. Am. J. Physiol., 250: C861, 1986.PubMedGoogle Scholar
  45. 45.
    Mohammad, M.A. and Sparrow, M.P.: The heavy-chain stoichiometry of smooth muscle myosin is a characteristic of smooth muscle tissues. Aust. J. Biol. Sci., 41: 409, 1988.PubMedGoogle Scholar
  46. 46.
    Samuel, M., Kim, Y., Horiuchi, K.Y., Levin, R.M., and Chacko, S.: Smooth muscle myosin isoform distribution and myosin ATPase in hypertrophied urinary bladder. Biochem. Int., 26: 645, 1992.PubMedGoogle Scholar
  47. 47.
    Sartore, S., Demarzo, N., Barrione, A., Zanellato, A., Saggin, L., Fabbri, L., and Schiaffino, S.: Myosin heavy chain isoforms in human smooth muscle. Eur. J. Biochem., 179: 79, 1989.PubMedCrossRefGoogle Scholar
  48. 48.
    Eddinger, T.J. and Murphy, R.A.: Two smooth muscle myosin heavy chains differ in their light meromyosin fragment. Biochemistry, 27: 3807, 1988.PubMedCrossRefGoogle Scholar
  49. 49.
    Kelley, C.A., Takahashi, M., Yu, J.H., and Adelstein, R.S.: An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J. Biol. Chem., 268: 12848, 1993.PubMedGoogle Scholar
  50. 50.
    Babij, P. Tissue-specific and developmentally regulated alternative splicing of a visceral isoform of smooth muscle myosin heavy chain. Nucleic Acids Res., 21: 1467, 1993.PubMedCrossRefGoogle Scholar
  51. 51.
    Babij, P., Kelly, C., and Periasamy, M.: Characterization of a mammalian smooth muscle myosin heavy-chain gene: complete nucleotide and protein coding sequence and analysis of the 5’ end of the gene. Proc. Natl. Acad. Sci. U.S.A., 88: 10676, 1991.PubMedCrossRefGoogle Scholar
  52. 52.
    DiSanto, M.E., Wang, Z., Menon, C., Zheng, Y., Chacko, T., Hypolite, J., Broderick, G., Wein, A.J., and Chacko, S.: Expression of myosin isoforms in smooth muscle cells in the corpus cavernosum penis. Am. J. Physiol., 275: C976, 1998.PubMedGoogle Scholar
  53. 53.
    DiSanto, M.E., Cox, R.H., Wang, Z., and Chacko, S.: NH2-terminal-inserted myosin II heavy chain is expressed in smooth muscle of small muscular arteries. Am. J. Physiol., 272: C1532, 1997.PubMedGoogle Scholar
  54. 54.
    Coolsaet, B. and van Duyl, W.: Pathophysiology of outlet obstruction. In: The bladder. Edited by J.M. Fitzpatrick and R.J. Krane, New York: Churchill Livingstone, pp. 91–117, 1995.Google Scholar
  55. 55.
    Steers, W.D. Physiology of the urinary bladder. In: Urology. Edited by P.C. Walsh, A.B. Retik, T.A. Stamey, and E.D. Vaughan, Jr., Philadelphia: Saunders, pp. 142–176, 1992.Google Scholar
  56. 56.
    Wein, A.J. Bladder outlet obstruction- an overview. [Review]. Adv. Exp. Med. Biol., 385: 3, 1995.PubMedGoogle Scholar
  57. 57.
    Wein, A.J., Levin, R.M., and Barrett, D.M.: Voiding function: Relevant anatomy, physiology, and pharmacology. In: Adult and Pediatric Urology. Edited by J.Y. Gillenwater, J.T. Grayhack, S.S. Howards, and J.D. Duckett, Philadelphia: Mosby Year Book, pp. 933–999,1991.Google Scholar
  58. 58.
    Levin, R.M., Malkowicz, S.B., Wein, A.J., Atta, M.A., and Elbadawi, A.: Recovery from short-term obstruction of the rabbit urinary bladder. J. Urol., 134: 388, 1985.PubMedGoogle Scholar
  59. 59.
    Lin, V.K. and McConnell, J.D.: Molecular aspects of bladder outlet obstruction. [Review]. Adv. Exp. Med. Biol., 385: 65, 1995.PubMedGoogle Scholar
  60. 60.
    Mostwin, J.L., Karim, O.M.A., VanKoeveringe, G., and Brooks, E.L.: The guinea pig as a model of gradual urethral obstruction. J. Urol., 145: 854, 1991.PubMedGoogle Scholar
  61. 61.
    Uvelius, B., Persson, L., and Mattiasson, A.: Smooth muscle cell hypertrophy and hyperplasia in the rat detrusor after short-term intravesical outflow obstruction. J. Urol., 131: 173, 1984.PubMedGoogle Scholar
  62. 62.
    Wang, Z.E., Gopalakurup, S.K., Levin, R.M., and Chacko, S.: Expression of smooth muscle myosin iso-forms in urinary bladder smooth muscle during hypertrophy and regression. Lab. Invest., 73: 244, 1995.PubMedGoogle Scholar
  63. 63.
    Malkowicz, S.B., Wein, A.J., Elbadawi, A., Van Arsdalen, K., Ruggieri, M.R., Levin, and RM.: Acute biochemical and functional alterations in the partially obstructed rabbit urinary bladder. J. Urol., 136: 1324, 1986.PubMedGoogle Scholar
  64. 64.
    Chacko, S. and Rosenfeld, A.: Regulation of actin-activated ATP hydrolysis by arterial myosin. Proc. Natl. Acad. Sci. U.S.A., 79: 292, 1982.PubMedCrossRefGoogle Scholar
  65. 65.
    Samuel, M., Chowrashi, P.K., Pepe, RA., and Chacko, S.: Effects of phosphorylation, magnesium, and filament assembly on actin-activated ATPase of pig urinary bladder myosin. Biochemistry, 29: 7124, 1990.PubMedCrossRefGoogle Scholar
  66. 66.
    Malmqvist, U. and Arner, A.: Correlation between isoform composition of the 17 kDa myosin light chain and maximal shortening velocity in smooth muscle. Pflugers Archiv., 418: 523, 1991.PubMedCrossRefGoogle Scholar
  67. 67.
    Somlyo, A.P. Myosin isoforms in smooth muscle: how may they affect function and structure?. [Review]. J. Muscle. Res. Cell Motil. 14: 557, 1993.PubMedCrossRefGoogle Scholar
  68. 68.
    Helper, D.J., Lash, J.A., and Hathaway, D.R.: Distribution of isoelectric variants of the 17,000-dalton myosin light chain in mammalian smooth muscle [published erratum appears in J. Biol. Chem 1989 Feb 5; 264 (4): 2391]. J. Biol. Chem., 263: 15748, 1988.PubMedGoogle Scholar
  69. 69.
    Vandekerckhove, J. and Weber, K.: At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino- terminal tryptic peptide. J. Mol. Biol., 126: 783, 1978.PubMedCrossRefGoogle Scholar
  70. 70.
    Lau, S.Y., Sanders, C., and Smillie, L.B.: Amino acid sequence of chicken gizzard gamma-tropomyosin. J. Biol. Chem., 260: 7257, 1985.PubMedGoogle Scholar
  71. 71.
    Fatigati, V. and Murphy, R.A.: Actin and tropomyosin variants in smooth muscles. Dependence on tissue type. J. Biol. Chem., 259: 14383, 1984.PubMedGoogle Scholar
  72. 72.
    Chacko, S. and Eisenberg, E.: Cooperativity of actin-activated ATPase of gizzard heavy meromyosin in the presence of gizzard tropomyosin. J. Biol. Chem., 265: 2105, 1990.PubMedGoogle Scholar
  73. 73.
    Bryan, J., Imai, M., Lee, R., Moore, P., Cook, R.G., and Lin, W.G.: Cloning and expression of a smooth muscle caldesmon. J. Biol. Chem., 264: 13873, 1989.PubMedGoogle Scholar
  74. 74.
    Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S.: Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc. Natl. Acad. Sci. U.S.A., 78: 5652, 1981.PubMedCrossRefGoogle Scholar
  75. 75.
    Fujii, T., Ozawa, J., Ogoma, Y., and Kondo, Y.: Interaction between chicken gizzard caldesmon and tropomyosin. J. Biochem., 104: 734, 1988.PubMedGoogle Scholar
  76. 76.
    Graceffa, P. Evidence for interaction between smooth muscle tropomyosin and caldesmon. FEBS Lett., 218: 139, 1987.PubMedCrossRefGoogle Scholar
  77. 77.
    Horiuchi, K.Y. and Chacko, S.: Interaction between caldesmon and tropomyosin in the presence and absence of smooth muscle actin. Biochemistry, 27: 8388, 1988.PubMedCrossRefGoogle Scholar
  78. 78.
    Ikebe, M. and Reardon, S.: Binding of caldesmon to smooth muscle myosin. J. Biol. Chem., 263: 3055, 1988.PubMedGoogle Scholar
  79. 79.
    Novy, R.E., Lin, J.L., and Lin, J.J.: Characterization of cDNA clones encoding a human fibroblast caldesmon isoform and analysis of caldesmon expression in normal and transformed cells. J. Biol. Chem., 266: 16917, 1991.PubMedGoogle Scholar
  80. 80.
    Horiuchi, K.Y., Samuel, M., and Chacko, S.: Mechanism for the inhibition of acto-heavy meromyosin ATPase by the actin/calmodulin binding domain of caldesmon. Biochemistry, 30: 712, 1991.PubMedCrossRefGoogle Scholar
  81. 81.
    Sobue, K.., Takahashi, K., and Wakabayashi, I.: Caldesmon 150 regulates the tropomyosin-enhanced actin-myosin interaction in gizzard smooth muscle. Biochem. Biophys. Res. Commun., 132: 645, 1985.PubMedCrossRefGoogle Scholar
  82. 82.
    Zhuang, S., Wang, E., and Wang, C.L.: Identification of the functionally relevant calmodulin binding site in smooth muscle caldesmon. J. Biol. Chem., 270: 19964, 1995.PubMedCrossRefGoogle Scholar
  83. 83.
    Lehman, W. Calponin and the composition of smooth muscle thin filaments [news]. J. Muscle Res. Cell Motil., 12: 221, 1991.PubMedCrossRefGoogle Scholar
  84. 84.
    Takahashi, K., Hiwada, K., and Kokubu, T.: Vascular smooth muscle calponin. A novel troponin T-like protein. Hypertension, 11: 620, 1988.PubMedCrossRefGoogle Scholar
  85. 85.
    Horiuchi, K.Y. and Chacko, S.: The mechanism for the inhibition of actin-activated ATPase of smooth muscle heavy meromyosin by calponin. Biochem. Biophys. Res. Commun., 176: 1487, 1991.PubMedCrossRefGoogle Scholar
  86. 86.
    Kim, Y.S., Levin, R.M., and Chacko, S. Alteration of the composition of actin isoforms in urinary bladder hypertrophy. FASEB J., 5:A1738, 1991.(Abstract)Google Scholar
  87. 87.
    Kim, Y.S., Wang, Z., Levin, R.M., and Chacko, S.: Alterations in the expression of the beta-cytoplasmic and the gamma-smooth muscle actins in hypertrophied urinary bladder smooth muscle. Mol. Cell Biol., 131: 115, 1994.Google Scholar
  88. 88.
    Malmqvist, U., Arner, A., and Uvelius, B.: Contractile and cytoskeletal proteins in smooth muscle during hypertrophy and its reversal. Am. J. Physiol., 260: C1085, 1991.PubMedGoogle Scholar
  89. 89.
    Buoro, S., Ferrarese, P., Chiavegato, A., Roelofs, M., Scatena, M., Pauletto, P., Passerini-Glazel, G., Pagano, F., and Sartore, S.: Myofibroblast-derived smooth muscle cells during remodelling of rabbit urinary bladder wall induced by partial outflow obstruction. Lab. Invest., 69: 589, 1993.PubMedGoogle Scholar
  90. 90.
    Lin, V.K., Lee, I.L., and McConnell, J.D.: Expression of nonmuscle-caldesmon in obstruction-induced detrusor hypertrophy is regulated at mRNA level. J. Urol., 147: 314A, 1992.Google Scholar
  91. 91.
    Menon, C., Zheng, Y., DiSanto, M.E., Nigro, D., Hypolite, J., Wein, A.J., and Chacko, S. Molecular mechanism for contractile dysfunction in the detrusor following outlet obstruction: expression of caldes-mon, a protein that regulates actin-myosin interaction in the smooth muscle. J. Urol. 157:148, 1997.(Abstract)CrossRefGoogle Scholar
  92. 92.
    Yanagisawa, M., Hamada, Y., Katsuragawa, Y., Imamura, M., Mikawa, T., and Masaki, T.: Complete primary structure of vertebrate smooth muscle myosin heavy chain deduced from its complementary DNA sequence. Implications on topography and function of myosin. J. Mol. Biol., 198: 143, 1987.PubMedCrossRefGoogle Scholar
  93. 93.
    White, S., Martin, A.F., and Periasamy, M.: Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am. J. Physiol., 264: C1252, 1993.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Samuel Chacko
    • 1
    • 2
  • Michael DiSanto
    • 2
  • Chandrakala Menon
    • 2
  • Yongmu Zheng
    • 2
  • Joseph Hypolite
    • 2
  • Alan J. Wein
    • 2
  1. 1.Department of PathobiologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Division of UrologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations