Skip to main content

Contractile Protein Changes in Urinary Bladder Smooth Muscle Following Outlet Obstruction

  • Chapter
Advances in Bladder Research

Abstract

Force production by the bladder body smooth muscle and relaxation of the bladder outlet, required for bladder emptying, are regulated by Ca2+ via myosin light chain (MLC) phosphorylation by a Ca2+-calmodulin-dependent MLC kinase (for review, 1–3). Besides this mode of regulation, evidence from most laboratories, including ours, supports the existence of a thin-filament-mediated regulation due to protein-protein interaction by actin-binding proteins acting in concert with tropomyosin and a calcium-binding protein, most likely, calmodulin. Caldesmon (CaD), a thin-filament-associated protein, inhibits the ac-tin-myosin interaction and actomyosin ATPase, and this inhibition is reversed by calmodulin in the presence of Ca2+.3–5 Urinary bladder outlet obstruction interferes with the ability of the bladder to empty its contents, thereby inducing changes in the bladder wall smooth muscle cells which enable the bladder to produce the increased contractile force required to expel urine through the obstructed urethra. In the initial phases of outlet obstruction, there is transient decompensation of the bladder smooth muscle, which initiates the molecular events that lead to hypertrophy of the detrusor smooth muscle cells enabling it to generate and maintain force. However, continuation of the outlet obstruction induces molecular, cellular, and structural alterations in the muscle cells of the bladder wall, leading ultimately to decreased compliance and impaired emptying. The ability of smooth muscles to compensate for increased functional demand is associated with alterations in the expression of proteins in the thick- and thin-filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein, R.S. and Eisenberg, E.: Regulation and kinetics of the actin-myosin-ATP interaction. [Review]. Annu. Rev. Biochem., 49: 921, 1980.

    Article  PubMed  CAS  Google Scholar 

  2. Kamm, K.E. and Stull, J.T.: The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. [Review]. Ann. Rev. Pharmacol. Toxicol., 25: 593, 1985.

    Article  CAS  Google Scholar 

  3. Chacko, S. and Longhurst, P.A.: Regulation of actomyosin and contraction in smooth muscle. [Review]. World J. Urol., 12: 292, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. Marston, S.B. and Redwood, C.S.: The molecular anatomy of caldesmon. [Review] [189 refs]. Biochem. J., 279: 1, 1991.

    PubMed  CAS  Google Scholar 

  5. Sobue, K. and Sellers, J.R.: Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. [Review] [89 refs]. J. Biol. Chem., 266: 12115, 1991.

    PubMed  CAS  Google Scholar 

  6. Ebashi, S. The Croonian lecture, 1979: Regulation of muscle contraction. Proc. R. Soc. Lond. — Series B: Biol. Sci., 207: 259, 1980.

    Article  CAS  Google Scholar 

  7. Chacko, S. and Longhurst, P.A.: Contractile proteins and their response to bladder outlet obstruction. [Review]. Adv. Exp. Med. Biol., 385: 55, 1995.

    PubMed  CAS  Google Scholar 

  8. Huxley, H.E. and Kress, M.: Crossbridge behaviour during muscle contraction. [Review] [28 refs]. J. Muscle Res. Cell Motil., 6: 153, 1985.

    Article  PubMed  CAS  Google Scholar 

  9. Nonomura, Y. and Ebashi, S.: Calcium regulatory mechanism in vertebrate smooth muscle. Biomed. Res., 1: 1, 1980.

    CAS  Google Scholar 

  10. Parry, D.A. and Squire, J.M.: Structural role of tropomyosin in muscle regulation: analysis of the x-ray diffraction patterns from relaxed and contracting muscles. J. Mol. Biol., 75: 33, 1973.

    Article  PubMed  CAS  Google Scholar 

  11. Chacko, S., Rosenfeld, A., and Thomas, G.: Calcium regulation of smooth muscle actomyosin. In: Calcium and contractility. Edited by A.K. Grover and E.E. Daniel, Clifton, NJ: Humana Press, pp. 175–190,1985.

    Chapter  Google Scholar 

  12. Fay, F.S., Shlevin, H.H., Granger, W.C., and Taylot, S.R.: Aequorin luminescence during activation of single isolated smooth muscle cells. Nature, 280: 506, 1979.

    Article  PubMed  CAS  Google Scholar 

  13. Somlyo, A.P. and Somlyo, A.V.: Signal transduction and regulation in smooth muscle [published erratum appears in Nature 1994 Dec 22–29; 372 (6508): 812]. [Review]. Nature, 372: 231, 1994.

    Article  PubMed  CAS  Google Scholar 

  14. Hartshorne, D.J.: Physiology of the gastrointestinal tract, 2nd ed. New York, Raven, 1987.

    Google Scholar 

  15. Kendrick-Jones, J., Cande, W.Z., Tooth, P.J., Smith, R.C., and Scholey, J.M.: Studies on the effect of phosphorylation of the 20,000 Mr light chain of vertebrate smooth muscle myosin. J. Mol. Biol., 165: 139, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki, H., Onishi, H., Takahashi, K., and Watanabe, S.: Structure and function of chicken gizzard myosin. J. Biochem.(Tokyo), 84: 1529, 1978.

    PubMed  CAS  Google Scholar 

  17. Trybus, K.M. Filamentous smooth muscle myosin is regulated by phosphorylation. J. Cell Biol., 109: 2887, 1989.

    Article  PubMed  CAS  Google Scholar 

  18. Chacko, S., Conti, M.A., and Adelstein, R.S.: Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation. Proc. Natl. Acad. Sci. U.S.A., 74: 129, 1977.

    Article  PubMed  CAS  Google Scholar 

  19. Gorecka, A., Aksoy, M.O., and Hartshorne, D.J.: The effect of phosphorylation of gizzard myosin on actin activation. Biochem. Biophys. Res. Commun., 71: 325, 1976.

    Article  PubMed  CAS  Google Scholar 

  20. Sellers, J.R., Pato, M.D., and Adelstein, R.S.: Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J. Biol. Chem., 256: 13137, 1981.

    PubMed  CAS  Google Scholar 

  21. Sobieszek, A. and Small, J.V.: Regulation of the actin-myosin interaction in vertebrate smooth muscle: activation via a myosin light-chain kinase and the effect of tropomyosin. J. Mol. Biol., 112: 559, 1977.

    Article  PubMed  CAS  Google Scholar 

  22. Barany, M. and Barany, K.: Phosphorylation of the myofibrillar proteins. Ann. Rev. Physiol., 42: 275, 1980.

    Article  CAS  Google Scholar 

  23. Butler, T.M., Siegman, M.J., and Mooers, S.U.: Chemical energy usage during shortening and work production in mammalian smooth muscle. Am. J. Physiol., 244: C234, 1983.

    PubMed  CAS  Google Scholar 

  24. Dillon, P.F., Aksoy, M.O., Driska, S.P., and Murphy, R.A.: Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science, 211: 495, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Gerthoffer, W.T., Murphey, K.A., Mangini, J., Boman, S., and Lattanzio, F.A., Jr.: Myosin phosphorylation and calcium in tonic and phasic contractions of colonic smooth muscle. Am. J. Physiol., 260: G958, 1991.

    PubMed  CAS  Google Scholar 

  26. Butler, T.M. and Siegman, M.J.: Chemical energy usage and myosin light chain phosphorylation in mammalian smooth muscle. Federation Proc., 42: 57, 1983.

    CAS  Google Scholar 

  27. Borovikov, Y.S., Khoroshev, M.I., and Chacko, S.: Comparison of the effects of calponin and a 38-kDa caldesmon fragment on formation of the “strong-binding” state in ghost muscle fibers. Biochem. Biophys. Res. Commun., 223: 240, 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Horiuchi, K.Y. and Chacko, S.: Effect of unphosphorylated smooth muscle myosin on caldesmon-mediated regulation of actin filament velocity. J. Muscle Res. Cell Motil., 16: 11, 1995.

    Article  PubMed  CAS  Google Scholar 

  29. Pfitzer, G., Zeugner, C., Troschka, M., and Chalovich, J.M.: Caldesmon and a 20-kDa actin-binding fragment of caldesmon inhibit tension development in skinned gizzard muscle fiber bundles. Proc. Natl. Acad. Sci. U.S.A., 90: 5904, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Horowitz, A., ClementChomienne, O., Walsh, M.P., Tao, T., Katsuyama, H., and Morgan, K.G.: Effects of calponin on force generation by single smooth muscle cells. Am. J. Physiol., 39: H1858, 1996.

    Google Scholar 

  31. Hemric, M.E. and Chalovich, J.M.: Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin. J. Biol. Chem., 263: 1878, 1988.

    PubMed  CAS  Google Scholar 

  32. Wang, Z., Jiang, H., Yang, Z.Q., and Chacko, S.: Both N-terminal myosin-binding and C-terminal actin-binding sites on smooth muscle caldesmon are required for caldesmon- mediated inhibition of actin filament velocity. Proc. Natl. Acad. Sci. U.S.A., 94: 11899, 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Sutherland, C. and Walsh, M.P.: Phosphorylation of caldesmon prevents its interaction with smooth muscle myosin. J. Biol. Chem., 264: 578, 1989.

    PubMed  CAS  Google Scholar 

  34. Malmqvist, U., Amer, A., Makuch, R., and Dabrowska, R.: The effects of caldesmon extraction on mechanical properties of skinned smooth muscle fibre preparations. Pflugers Arch., 432: 241, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Chacko, S. and Longhurst, P.A.: Contractile proteins and their response to bladder outlet obstruction. In: Muscle, matrix, and bladder function. Edited by S.A. Zderic, New York: Plenum Press, pp. 55–63,1995.

    Google Scholar 

  36. Craig, R. and Megerman, J.: Assembly of smooth muscle myosin into side-polar filaments. J. Cell Biol., 75: 990, 1977.

    Article  PubMed  CAS  Google Scholar 

  37. Harrington, W.F., Burke, M., and Barton, J.S.: Association of myosin to form contractile systems. Symposia on Quantitative Biology, XXXVII: 1972.

    Google Scholar 

  38. Somlyo, A.P., Devine, C.E., Somlyo, A.V., and Rice, R.V.: Filament organization in vertebrate smooth muscle. Phil. Trans. R. Soc. Lond. — Series B: Biol. Sci., 265: 223, 1973.

    Article  CAS  Google Scholar 

  39. Wachsberger, P.R. and Pepe, F.A.: Purification of uterine myosin and synthetic filament formation. J. Mol. Biol., 88: 385, 1974.

    Article  PubMed  CAS  Google Scholar 

  40. Kamm, K.E. and Stull, J.T.: Myosin phosphorylation, force, and maximal shortening velocity in neurally stimulated tracheal smooth muscle. Am. J. Physiol., 249: C238, 1985.

    PubMed  CAS  Google Scholar 

  41. Dreizen, P. and Gershman, L.C.: Relationship of structure to function in myosin. II. Salt denaturation and recombination experiments. Biochemistry, 9: 1688, 1970.

    Article  PubMed  CAS  Google Scholar 

  42. Rayment, I., Rypniewski, W.R., Schmidt-Base, K., Smith, R., Tomchick, D.R., Benning, M.M., Winkelmann, D.A., Wesenberg, G., and Holden, H.M.: Three-dimensional structure of myosin subfragment-1: a molecular motor [see comments]. Science, 261: 50, 1993.

    Article  PubMed  CAS  Google Scholar 

  43. Babij, P. and Periasamy, M.: Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J. Mol. Biol., 210: 673, 1989.

    Article  PubMed  CAS  Google Scholar 

  44. Rovner, A.S., Thompson, M.M., and Murphy, R.A.: Two different heavy chains are found in smooth muscle myosin. Am. J. Physiol., 250: C861, 1986.

    PubMed  CAS  Google Scholar 

  45. Mohammad, M.A. and Sparrow, M.P.: The heavy-chain stoichiometry of smooth muscle myosin is a characteristic of smooth muscle tissues. Aust. J. Biol. Sci., 41: 409, 1988.

    PubMed  CAS  Google Scholar 

  46. Samuel, M., Kim, Y., Horiuchi, K.Y., Levin, R.M., and Chacko, S.: Smooth muscle myosin isoform distribution and myosin ATPase in hypertrophied urinary bladder. Biochem. Int., 26: 645, 1992.

    PubMed  CAS  Google Scholar 

  47. Sartore, S., Demarzo, N., Barrione, A., Zanellato, A., Saggin, L., Fabbri, L., and Schiaffino, S.: Myosin heavy chain isoforms in human smooth muscle. Eur. J. Biochem., 179: 79, 1989.

    Article  PubMed  CAS  Google Scholar 

  48. Eddinger, T.J. and Murphy, R.A.: Two smooth muscle myosin heavy chains differ in their light meromyosin fragment. Biochemistry, 27: 3807, 1988.

    Article  PubMed  CAS  Google Scholar 

  49. Kelley, C.A., Takahashi, M., Yu, J.H., and Adelstein, R.S.: An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestines and vasculature. J. Biol. Chem., 268: 12848, 1993.

    PubMed  CAS  Google Scholar 

  50. Babij, P. Tissue-specific and developmentally regulated alternative splicing of a visceral isoform of smooth muscle myosin heavy chain. Nucleic Acids Res., 21: 1467, 1993.

    Article  PubMed  CAS  Google Scholar 

  51. Babij, P., Kelly, C., and Periasamy, M.: Characterization of a mammalian smooth muscle myosin heavy-chain gene: complete nucleotide and protein coding sequence and analysis of the 5’ end of the gene. Proc. Natl. Acad. Sci. U.S.A., 88: 10676, 1991.

    Article  PubMed  CAS  Google Scholar 

  52. DiSanto, M.E., Wang, Z., Menon, C., Zheng, Y., Chacko, T., Hypolite, J., Broderick, G., Wein, A.J., and Chacko, S.: Expression of myosin isoforms in smooth muscle cells in the corpus cavernosum penis. Am. J. Physiol., 275: C976, 1998.

    PubMed  CAS  Google Scholar 

  53. DiSanto, M.E., Cox, R.H., Wang, Z., and Chacko, S.: NH2-terminal-inserted myosin II heavy chain is expressed in smooth muscle of small muscular arteries. Am. J. Physiol., 272: C1532, 1997.

    PubMed  CAS  Google Scholar 

  54. Coolsaet, B. and van Duyl, W.: Pathophysiology of outlet obstruction. In: The bladder. Edited by J.M. Fitzpatrick and R.J. Krane, New York: Churchill Livingstone, pp. 91–117, 1995.

    Google Scholar 

  55. Steers, W.D. Physiology of the urinary bladder. In: Urology. Edited by P.C. Walsh, A.B. Retik, T.A. Stamey, and E.D. Vaughan, Jr., Philadelphia: Saunders, pp. 142–176, 1992.

    Google Scholar 

  56. Wein, A.J. Bladder outlet obstruction- an overview. [Review]. Adv. Exp. Med. Biol., 385: 3, 1995.

    PubMed  CAS  Google Scholar 

  57. Wein, A.J., Levin, R.M., and Barrett, D.M.: Voiding function: Relevant anatomy, physiology, and pharmacology. In: Adult and Pediatric Urology. Edited by J.Y. Gillenwater, J.T. Grayhack, S.S. Howards, and J.D. Duckett, Philadelphia: Mosby Year Book, pp. 933–999,1991.

    Google Scholar 

  58. Levin, R.M., Malkowicz, S.B., Wein, A.J., Atta, M.A., and Elbadawi, A.: Recovery from short-term obstruction of the rabbit urinary bladder. J. Urol., 134: 388, 1985.

    PubMed  CAS  Google Scholar 

  59. Lin, V.K. and McConnell, J.D.: Molecular aspects of bladder outlet obstruction. [Review]. Adv. Exp. Med. Biol., 385: 65, 1995.

    PubMed  CAS  Google Scholar 

  60. Mostwin, J.L., Karim, O.M.A., VanKoeveringe, G., and Brooks, E.L.: The guinea pig as a model of gradual urethral obstruction. J. Urol., 145: 854, 1991.

    PubMed  CAS  Google Scholar 

  61. Uvelius, B., Persson, L., and Mattiasson, A.: Smooth muscle cell hypertrophy and hyperplasia in the rat detrusor after short-term intravesical outflow obstruction. J. Urol., 131: 173, 1984.

    PubMed  CAS  Google Scholar 

  62. Wang, Z.E., Gopalakurup, S.K., Levin, R.M., and Chacko, S.: Expression of smooth muscle myosin iso-forms in urinary bladder smooth muscle during hypertrophy and regression. Lab. Invest., 73: 244, 1995.

    PubMed  CAS  Google Scholar 

  63. Malkowicz, S.B., Wein, A.J., Elbadawi, A., Van Arsdalen, K., Ruggieri, M.R., Levin, and RM.: Acute biochemical and functional alterations in the partially obstructed rabbit urinary bladder. J. Urol., 136: 1324, 1986.

    PubMed  CAS  Google Scholar 

  64. Chacko, S. and Rosenfeld, A.: Regulation of actin-activated ATP hydrolysis by arterial myosin. Proc. Natl. Acad. Sci. U.S.A., 79: 292, 1982.

    Article  PubMed  CAS  Google Scholar 

  65. Samuel, M., Chowrashi, P.K., Pepe, RA., and Chacko, S.: Effects of phosphorylation, magnesium, and filament assembly on actin-activated ATPase of pig urinary bladder myosin. Biochemistry, 29: 7124, 1990.

    Article  PubMed  CAS  Google Scholar 

  66. Malmqvist, U. and Arner, A.: Correlation between isoform composition of the 17 kDa myosin light chain and maximal shortening velocity in smooth muscle. Pflugers Archiv., 418: 523, 1991.

    Article  PubMed  CAS  Google Scholar 

  67. Somlyo, A.P. Myosin isoforms in smooth muscle: how may they affect function and structure?. [Review]. J. Muscle. Res. Cell Motil. 14: 557, 1993.

    Article  PubMed  CAS  Google Scholar 

  68. Helper, D.J., Lash, J.A., and Hathaway, D.R.: Distribution of isoelectric variants of the 17,000-dalton myosin light chain in mammalian smooth muscle [published erratum appears in J. Biol. Chem 1989 Feb 5; 264 (4): 2391]. J. Biol. Chem., 263: 15748, 1988.

    PubMed  CAS  Google Scholar 

  69. Vandekerckhove, J. and Weber, K.: At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino- terminal tryptic peptide. J. Mol. Biol., 126: 783, 1978.

    Article  PubMed  CAS  Google Scholar 

  70. Lau, S.Y., Sanders, C., and Smillie, L.B.: Amino acid sequence of chicken gizzard gamma-tropomyosin. J. Biol. Chem., 260: 7257, 1985.

    PubMed  CAS  Google Scholar 

  71. Fatigati, V. and Murphy, R.A.: Actin and tropomyosin variants in smooth muscles. Dependence on tissue type. J. Biol. Chem., 259: 14383, 1984.

    PubMed  CAS  Google Scholar 

  72. Chacko, S. and Eisenberg, E.: Cooperativity of actin-activated ATPase of gizzard heavy meromyosin in the presence of gizzard tropomyosin. J. Biol. Chem., 265: 2105, 1990.

    PubMed  CAS  Google Scholar 

  73. Bryan, J., Imai, M., Lee, R., Moore, P., Cook, R.G., and Lin, W.G.: Cloning and expression of a smooth muscle caldesmon. J. Biol. Chem., 264: 13873, 1989.

    PubMed  CAS  Google Scholar 

  74. Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S.: Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc. Natl. Acad. Sci. U.S.A., 78: 5652, 1981.

    Article  PubMed  CAS  Google Scholar 

  75. Fujii, T., Ozawa, J., Ogoma, Y., and Kondo, Y.: Interaction between chicken gizzard caldesmon and tropomyosin. J. Biochem., 104: 734, 1988.

    PubMed  CAS  Google Scholar 

  76. Graceffa, P. Evidence for interaction between smooth muscle tropomyosin and caldesmon. FEBS Lett., 218: 139, 1987.

    Article  PubMed  CAS  Google Scholar 

  77. Horiuchi, K.Y. and Chacko, S.: Interaction between caldesmon and tropomyosin in the presence and absence of smooth muscle actin. Biochemistry, 27: 8388, 1988.

    Article  PubMed  CAS  Google Scholar 

  78. Ikebe, M. and Reardon, S.: Binding of caldesmon to smooth muscle myosin. J. Biol. Chem., 263: 3055, 1988.

    PubMed  CAS  Google Scholar 

  79. Novy, R.E., Lin, J.L., and Lin, J.J.: Characterization of cDNA clones encoding a human fibroblast caldesmon isoform and analysis of caldesmon expression in normal and transformed cells. J. Biol. Chem., 266: 16917, 1991.

    PubMed  CAS  Google Scholar 

  80. Horiuchi, K.Y., Samuel, M., and Chacko, S.: Mechanism for the inhibition of acto-heavy meromyosin ATPase by the actin/calmodulin binding domain of caldesmon. Biochemistry, 30: 712, 1991.

    Article  PubMed  CAS  Google Scholar 

  81. Sobue, K.., Takahashi, K., and Wakabayashi, I.: Caldesmon 150 regulates the tropomyosin-enhanced actin-myosin interaction in gizzard smooth muscle. Biochem. Biophys. Res. Commun., 132: 645, 1985.

    Article  PubMed  CAS  Google Scholar 

  82. Zhuang, S., Wang, E., and Wang, C.L.: Identification of the functionally relevant calmodulin binding site in smooth muscle caldesmon. J. Biol. Chem., 270: 19964, 1995.

    Article  PubMed  CAS  Google Scholar 

  83. Lehman, W. Calponin and the composition of smooth muscle thin filaments [news]. J. Muscle Res. Cell Motil., 12: 221, 1991.

    Article  PubMed  CAS  Google Scholar 

  84. Takahashi, K., Hiwada, K., and Kokubu, T.: Vascular smooth muscle calponin. A novel troponin T-like protein. Hypertension, 11: 620, 1988.

    Article  PubMed  CAS  Google Scholar 

  85. Horiuchi, K.Y. and Chacko, S.: The mechanism for the inhibition of actin-activated ATPase of smooth muscle heavy meromyosin by calponin. Biochem. Biophys. Res. Commun., 176: 1487, 1991.

    Article  PubMed  CAS  Google Scholar 

  86. Kim, Y.S., Levin, R.M., and Chacko, S. Alteration of the composition of actin isoforms in urinary bladder hypertrophy. FASEB J., 5:A1738, 1991.(Abstract)

    Google Scholar 

  87. Kim, Y.S., Wang, Z., Levin, R.M., and Chacko, S.: Alterations in the expression of the beta-cytoplasmic and the gamma-smooth muscle actins in hypertrophied urinary bladder smooth muscle. Mol. Cell Biol., 131: 115, 1994.

    CAS  Google Scholar 

  88. Malmqvist, U., Arner, A., and Uvelius, B.: Contractile and cytoskeletal proteins in smooth muscle during hypertrophy and its reversal. Am. J. Physiol., 260: C1085, 1991.

    PubMed  CAS  Google Scholar 

  89. Buoro, S., Ferrarese, P., Chiavegato, A., Roelofs, M., Scatena, M., Pauletto, P., Passerini-Glazel, G., Pagano, F., and Sartore, S.: Myofibroblast-derived smooth muscle cells during remodelling of rabbit urinary bladder wall induced by partial outflow obstruction. Lab. Invest., 69: 589, 1993.

    PubMed  CAS  Google Scholar 

  90. Lin, V.K., Lee, I.L., and McConnell, J.D.: Expression of nonmuscle-caldesmon in obstruction-induced detrusor hypertrophy is regulated at mRNA level. J. Urol., 147: 314A, 1992.

    Google Scholar 

  91. Menon, C., Zheng, Y., DiSanto, M.E., Nigro, D., Hypolite, J., Wein, A.J., and Chacko, S. Molecular mechanism for contractile dysfunction in the detrusor following outlet obstruction: expression of caldes-mon, a protein that regulates actin-myosin interaction in the smooth muscle. J. Urol. 157:148, 1997.(Abstract)

    Article  Google Scholar 

  92. Yanagisawa, M., Hamada, Y., Katsuragawa, Y., Imamura, M., Mikawa, T., and Masaki, T.: Complete primary structure of vertebrate smooth muscle myosin heavy chain deduced from its complementary DNA sequence. Implications on topography and function of myosin. J. Mol. Biol., 198: 143, 1987.

    Article  PubMed  CAS  Google Scholar 

  93. White, S., Martin, A.F., and Periasamy, M.: Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am. J. Physiol., 264: C1252, 1993.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chacko, S., DiSanto, M., Menon, C., Zheng, Y., Hypolite, J., Wein, A.J. (1999). Contractile Protein Changes in Urinary Bladder Smooth Muscle Following Outlet Obstruction. In: Baskin, L.S., Hayward, S.W. (eds) Advances in Bladder Research. Advances in Experimental Medicine and Biology, vol 462. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4737-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4737-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7147-2

  • Online ISBN: 978-1-4615-4737-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics