Skip to main content

The Impact of Molecular Biological Research on Current Views of Olfactory Coding

  • Chapter
Advances in Chemical Signals in Vertebrates
  • 349 Accesses

Abstract

The past decade has seen groundbreaking work in the molecular biology of olfaction. Results from studies investigating the components of olfactory transduction constitute major advances in olfactory research, elucidating peripheral encoding mechanisms, but also having an impact on our understanding of central olfactory processing. This chapter summarizes some of the findings of molecular biological work in both the main and accessory olfactory systems, raising the issue of how our understanding of olfactory coding has been influenced by the discovery of, and subsequent work with, the putative olfactory receptor genes and downstream molecular events. Projection patterns of different subclasses of receptor neurons characterized by molecular techniques hint at possible processing strategies in both systems. In the main olfactory system, there is now physiological evidence to support the idea of a functional chemotopic map across the glomerular layer of olfactory bulb, as suggested by gene expression patterns. Further functional experiments may verify additional hypotheses on olfactory coding generated by results of studies on the molecular biology of the peripheral olfactory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Astic L. & Saucier, D. 1986. Anatomical mapping of the neuroepithelial projection to the olfactory bulb in the rat. Br. Res. Bull., 16, 445–454.

    Article  CAS  Google Scholar 

  • Astic L., Saucier, D., & Holley, A. 1987. Topographical relationships between olfactory receptor cells and glomerular foci in the rat olfactory bulb. Br. Res., 424, 144–152.

    Article  CAS  Google Scholar 

  • Bakalyar, H.A. & Reed, R.R. 1990. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science, 250, 1403–1406.

    Article  PubMed  CAS  Google Scholar 

  • Breer H., Boekhoff I. & Tareilus, E. 1990. Rapid kinetics of second messenger formation in olfactory transduction. Nature, 45, 65–68.

    Article  Google Scholar 

  • Buck L. & Axel, R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 65, 175–187.

    Article  PubMed  CAS  Google Scholar 

  • Cinelli, A.R., Hamilton, K.A. & Kauer, J.S. 1995. Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. J. Neurophysiol., 73, 2053–2071.

    PubMed  CAS  Google Scholar 

  • Dhallan, R.S., Yau, K.W., Schrader, K.A. & Reed, R.R. 1990. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature, 347, 184–187.

    Article  PubMed  CAS  Google Scholar 

  • Dulac C. & Axel, R. 1995. A novel family of genes encoding putative pheromone receptors in mammals. Cell, 83, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Friedrich, R.W. & Korsching, S.I. 1997. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron, 18, 737–752.

    Article  PubMed  CAS  Google Scholar 

  • Gelperin A. & Tank, D.W. 1990. Odour-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc. Nature, 345, 437–440.

    Article  PubMed  CAS  Google Scholar 

  • Guthrie, K.M., Anderson, A.J., Leon M. & Gall, C. 1993. Odor-induced increases in c-fos mRNA expression reveal an anatomical ”unit” for odor processing in olfactory bulb. Proc. Natl. Acad. Sci., USA., 90, 3329–3333.

    Article  PubMed  CAS  Google Scholar 

  • Halpern M., Shapiro, L.S. & Jia, C. 1995. Differential localization of G proteins in the opossum vomeronasal system. Br. Res., 677, 157–161.

    Article  CAS  Google Scholar 

  • Hamilton, K.A. & Kauer, J.S. 1989. Patterns of intracellular potentials in salamander mitral/tufted cells in response to odor stimulation. J. NeurophysioL, 62, 609–625.

    PubMed  CAS  Google Scholar 

  • Herrada, G., & Dulac, C. 1997. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell, 90, 763–773.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa, M, Osada T. & Ikai, A. 1992. Bandeiraea simplicifolia lectin I and Vicia villosa agglutinin bind specifically to the vomeronasal axons in the accessory olfactory bulb of the rat. Neurosci. Res., 13, 73–79.

    Article  PubMed  CAS  Google Scholar 

  • Imamura K., Mori K., Fujita, S.C. & Obata, K. 1985. Immunochemical identification of subgroups of vomeronasal nerve fibers and their segregated terminations in the accessory olfactory bulb. Br. Res., 328, 362–366.

    Article  CAS  Google Scholar 

  • Jastreboff, P.J., Pedersen, P.E., Greer, C.A., Stewart, W.B., Kauer, J.S., Benson, T.E. & Shepherd, G.M. 1984. Specific olfactory receptor populations projecting to identified glomeruli in the rat olfactory bulb. Proc. Natl. Acad. Sci., USA., 81, 5250–5254.

    Article  PubMed  CAS  Google Scholar 

  • Jia, C, Goldman G. & Halpern, M. 1997. Development of vomeronasal receptor neuron subclasses and establishment of topographic projections to the accessory olfactory bulb. Br. Res. Dev. Br. Res., 102, 209–216.

    Article  CAS  Google Scholar 

  • Jia C. & Halpern, M. 1996. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Gi alpha 2 and G(o alpha)) and segregated projections to the accessory olfactory bulb. Br. Res., 719, 117–128.

    Article  CAS  Google Scholar 

  • Jones, D.T. & Reed, R.R. 1989. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science, 244, 790–5.

    Article  PubMed  CAS  Google Scholar 

  • Kauer, J.S. 1974. Response patterns of amphibian olfactory bulb neurones to odour stimulation. J. Physiol., 243, 695–715.

    PubMed  CAS  Google Scholar 

  • Kauer, J.S. 1988. Real-time imaging of evoked activity in local circuits of the salamander olfactory bulb. Nature, 331, 166–168.

    Article  PubMed  CAS  Google Scholar 

  • Kauer, J.S. 1991. Contributions of topography and parallel processing to odor coding in the vertebrate olfactory pathway. Trends Neurosci., 14, 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Kauer, J.S. & Cinelli, A.R. 1993. Are there structural and functional modules in the vertebrate olfactory bulb? Micro. Res. & Tech., 24, 157–167.

    Article  CAS  Google Scholar 

  • Kauer, J.S. & Moulton, D.G. 1974. Responses of olfactory bulb neurones to odour stimulation of small nasal areas in the salamander. J. Physiol., 243, 715–737.

    Google Scholar 

  • Laurent G., Wehr M. & Davidowitz, H. 1996. Temporal representations of odors in an olfactory network. J. Neurosci., 16, 3837–3847.

    PubMed  CAS  Google Scholar 

  • Lewin, B. 1994. On neuronal specificity and the molecular basis of perception. Cell, 79, 935–943.

    Article  PubMed  CAS  Google Scholar 

  • Matsunami H. & Buck, L. 1997. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell, 90, 775–784.

    Article  PubMed  CAS  Google Scholar 

  • Meredith, M. 1986. Patterned response to odor in mammalian olfactory bulb: the influence of intensity. J. Neurophysiol., 56, 572–597.

    PubMed  CAS  Google Scholar 

  • Mombaerts P., Wang F., Dulac C., Chao, S.K., Nemes A., Mendelsohn M., Edmondson J. & Axel, R. 1996. Visualizing an olfactory sensory map. Cell, 87, 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Mori K., Imamura K., Fujita, S.C. & Obata, K. 1987. Projections of two subclasses of vomeronasal nerve fibers to the accessory olfactory bulb in the rabbit. Neurosci. 20, 259–278.

    Article  CAS  Google Scholar 

  • Mori K. & Yoshihara, Y. 1995. Molecular recognition and olfactory processing in the mammalian olfactory system. Prog. Neurobiol., 45, 585–619.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T. & Gold, G.H. 1987. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature, 325, 442–444.

    Article  PubMed  CAS  Google Scholar 

  • Raming K., Krieger J., Strotmann J., Boekhoff I., Kubick S., Baumstark C. & Breer, H. 1993. Cloning and expression of odorant receptors. Nature, 361, 353–356.

    Article  PubMed  CAS  Google Scholar 

  • Ressler, K.J., Sullivan, S.L. & Buck, L.B. 1993. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell, 73, 597–609.

    Article  PubMed  CAS  Google Scholar 

  • Ressler, K.J., Sullivan, S.L. & Buck, L.B. 1994. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell, 79, 1245–1255.

    Article  PubMed  CAS  Google Scholar 

  • Ryba, N.J. & Tirindelli, R. 1997. Anew multigene family of putative pheromone receptors. Neuron, 19, 371–379.

    Article  PubMed  CAS  Google Scholar 

  • Schwarting, G.A. & Crandall, J.E. 1991. Subsets of olfactory and vomeronasal sensory epithelial cells and axons revealed by monoclonal antibodies to carbohydrate antigens. Br. Res., 547, 239–248

    Article  CAS  Google Scholar 

  • Shapiro, L.S., Ee, RL. & Halpern, M. 1995. Lectin histochemical identification of carbohydrate moieties in opossum chemosensory systems during development, with special emphasis on VVA-identifíed subdivisions in the accessory olfactory bulb. J. Morphol., 224, 331–349.

    Article  PubMed  CAS  Google Scholar 

  • Shnayder L., Schwanzel-Fukuda M. & Halpern, M. 1993. Differential OMP expression in opossum accessory olfactory bulb. Neuroreport, 5, 193–196.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, W.B. & Pedersen, RE. 1987. The spatial organization of olfactory nerve projections. Br. Res., 411, 248–258.

    Article  CAS  Google Scholar 

  • Sullivan, S.L., Ressler, K.J. & Buck, L.B. 1995. Spatial patterning and information coding in the olfactory system. Curr. Opin. Genet. & Dev., 5, 516–523.

    Article  CAS  Google Scholar 

  • Takami S., Graziadei, P.P. & Ichikawa, M. 1992. The differential staining patterns of two lectins in the accessory olfactory bulb of the rat. Br. Res., 598, 337–342.

    Article  CAS  Google Scholar 

  • Taniguchi K., Nii Y. & Ogawa, K. 1993. Subdivisions of the accessory olfactory bulb, as demonstrated by lectinhistochemistry in the golden hamster. Neurosci. Letters, 158, 185–188.

    Article  CAS  Google Scholar 

  • Vassar R., Chao, S.K., Sitcheran R., Nunez, J.M., Vosshall, L.B. & Axel, R. 1994. Topographic organization of sensory projections to the olfactory bulb. Cell, 79, 981–991.

    Article  PubMed  CAS  Google Scholar 

  • Vassar R., Ngai J. & Axel, R. 1993. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell, 74, 309–318.

    Article  PubMed  CAS  Google Scholar 

  • Yokoi M., Mori K. & Nakanishi, S. 1995. Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci., 92, 3371–3375.

    Article  PubMed  CAS  Google Scholar 

  • Zhao H., Ivic L., Otaki J., Hashimoto M., Mikoshiba K. & Firestein, S. 1998. Functional expression of a mammalian odorant receptor. Science, 279, 237.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorries, K.M. (1999). The Impact of Molecular Biological Research on Current Views of Olfactory Coding. In: Johnston, R.E., Müller-Schwarze, D., Sorensen, P.W. (eds) Advances in Chemical Signals in Vertebrates. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4733-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4733-4_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7145-8

  • Online ISBN: 978-1-4615-4733-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics