Muscle Polymorphism and Gelling Properties of Myofibrillar Proteins from Poultry, Mammals, and Fish

  • F. Lefèvre
  • J. Culioli
  • S. Joandel-Monier
  • A. Ouali


Depending on their metabolic and contractile activities, muscles are classified in different types from fast-twitch glycolytic (white) to slow-twitch oxidative (red) muscles with several “intermediate” ones. Contractile proteins, especially myosins, are present in the myofibers of these various muscle types as different isoforms. The respective proportions of these isoforms give distinct functional properties. This review deals with the relation between muscle polymorphism and gelling properties of proteins which are largely involved in the elaboration of texture of meat, poultry and fish, as well as derived products in relation to water holding capacity and lipid retention ability. Protein dispersions from different muscle types exhibit distinct rheological behaviors during heating. Their sensitivities to parameters such as concentration, heating rate or physico-chemical environment (pH and ionic strength) are greatly dependent on muscle type. The influence of amino-acid composition and hydrophobicity of myosin isoforms on the functionality of muscle proteins is discussed


Myosin Heavy Chain Muscle Protein White Muscle Myofibrillar Protein Muscle Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, M.T.; Pearson, A.M., Price, J.F.; Hooper, G.R. Ultrastructural changes during autolysis of red and white porcine muscle. J Food Sci 1977, 42, 1185–1188CrossRefGoogle Scholar
  2. Aalhus, J. L.; Price, M. A. Endurance-exercised growing sheep. 1. Postmortem and histological changes in skeletal muscles. Meat Sci 1991a, 29 43–56CrossRefGoogle Scholar
  3. Acton, J. C.; Ziegler, G. R.; Burge, D. L. Functionality of muscle constituents in the processing of comminuted meat product. CRC Crit. Rev. Food Sci. Nut. 1983, 18 99–121CrossRefGoogle Scholar
  4. Amato, P. M.; Hamann, D. D.; Ball, H. R. Jr.; Foegeding, E. A. Influence of poultry species, muscle groups, and NaC1 level on strength, deformability, and water retention in heat-set gels. J. Food Sci 1989, 54, 1136–1140, 1157CrossRefGoogle Scholar
  5. Asghar, A.; Morita, J.; Samejima, K.; Yasui, T. Biochemical and functional characteristics of myosin from red and white muscle of chicken as influenced by nutritional stress. Agric. Biol. Chem 1984, 48 2217–2224CrossRefGoogle Scholar
  6. Asghar, A.; Samejima, K.; Yasui, T. Functionality of muscle proteins in gelation mechanisms of structured meat products. C.R.CCrit. Rev. Food Sci. Nut 1985, 22 27–106CrossRefGoogle Scholar
  7. Ashmore, C.R.; Doerr, L. Comparative aspects of muscle fibre types in different species. Exp. Neurol 1971, 31 408–418CrossRefGoogle Scholar
  8. Autio, K.; Kiesvaara, M.; Polvinen, K. Heat-induced gelation of minced rainbow trout (Salmo gairdneri): Effect of pH, sodium chloride and setting. J. Food Sci 1989, 54,805–808,823CrossRefGoogle Scholar
  9. Bacou, F.; Vigneron, P. Evolution périnatale des voies métaboliques glycolytique et oxydative de divers types de muscles squelettiques du lapin et du poulet. Ann. Biol. Anim. Bioch. Biophys 1976, 16 675–686CrossRefGoogle Scholar
  10. Bakir, H. M.; Hultin, H. O.; Kelleher, S. D. Some properties of fish gels made from several northwest Atlantic spe-cies in the presence of high and low salt. J. Food Proces. Preserv 1994, 18 103–117CrossRefGoogle Scholar
  11. Barany, M.; Barany, K.; Reckard, T.; Volpe, A. Myosin of fast and slow muscle of the rabbit. Archs. Biochem. Biophys 1965, 109 185–191CrossRefGoogle Scholar
  12. Barbut, S.; Mittal, G. S. Effect of heating rate on meat batter stability, texture and gelation. J. Food Sci 1990, 55, 334–337CrossRefGoogle Scholar
  13. Barbut, S.; Mittal, G. S. Effects of pH on physical properties of white and dark turkey meat. Poultry Sci 1993, 72, 1557–1565CrossRefGoogle Scholar
  14. Beas, V. E.; Crupkin, M.; Trueco, R. E. Gelling properties of actomyosin from pre-and post-spawning hake (Merluccius hubbsi). J. Food Sci 1988, 53, 1322–1326CrossRefGoogle Scholar
  15. Bodwell, C. E.; MacClain, P. E. Chemistry of animal tissue. Proteins. In “The science of meat and meat products”, 2nd Ed. (J.F. Price and B.S. Schweigert, Eds), W.H. Freeman and Co., San Francisco, 1971, 78–132Google Scholar
  16. Borejdo, J. Mapping of hydrophobic sites on the surface of myosin and its fragments. Biochem 1983, 22, 1182–1187CrossRefGoogle Scholar
  17. Boyer, C.; Joandel, S.; Ouali, A.; Culioli, J. Gélification thermique des protéines myofibrillaires et de la myosine. Ind. Alim. Agric 1994, 111, 16–21Google Scholar
  18. Boyer, C.; Joandel, S.; Roussilhes, V.; Culioli, J.; Ouali, A. Heat-induced gelation of myofibrillar proteins and myosin from fast-and slow-twitch rabbit muscles. J. Food Sci 1996a, 61 1138–1142CrossRefGoogle Scholar
  19. Boyer, C.; Joandel, S.; Ouali, A.; Culioli, J. Ionic strength effects on heat-induced gelation of myofibrils and myosin from fast-and slow-twitch rabbit muscles. J. Food Sci 1996b, 61 1143–1148CrossRefGoogle Scholar
  20. Boyer, C.; Joandel, S.; Ouali, A.; Culioli, J. Determination of surface hydrophobicity of fast and slow myosins from rabbit skeletal muscles: Implication in heat-induced gelation. J. Sci. Food Agric 1996c, 72 367–375CrossRefGoogle Scholar
  21. Brandstetter, A. M.; Picard, B.; Geay, Y. Muscle fibre characteristics in four muscles of growing male cattle. I.Postnatal differentiation. Livestock Prod. Sci. 1998a, 53, 15–23CrossRefGoogle Scholar
  22. Brandstetter, A. M.; Picard, B.; Geay, Y. Muscle fibre characteristics in four muscles of growing male cattle. II. Effect of castration and feeding level. Livestock Prod. Sci. 1998b, 53, 25–36CrossRefGoogle Scholar
  23. Briand, M.; Talmant, A.; Briand, Y.; Monin, G.; Durand, R. Metabolic types of muscles in the sheep: I. Myosin ATPase, glycolytic, and mitochondrial enzyme activities. Eur. J. Appl. Physiol 1981, 46 347–358CrossRefGoogle Scholar
  24. Brooke, M. H.; Kaiser, K. K. Three “ myosin ATPase ” systems. The nature of their pH liability and sulphydryl de-pendence. J. Histochem. Cvtochem 1970, 18 670–672CrossRefGoogle Scholar
  25. Brownsey, G.J.; Morris, V.J. Mixed and filled gels. In Food Structure - Its Creation and Evaluation” (J M. V. Blandshard and J. R. Mitchell, Eds) Butterworths, London, UK. 1988, 7–23Google Scholar
  26. Camou, J. P.; Sebranek, J. G. Gelation characteristics of muscle proteins from pale, soft, exudative (PSE) pork. Meat Sci 1991, 30 207–220CrossRefGoogle Scholar
  27. Careche, M.; Currall, J.; Mackie, I. M. A study of the effects of different factors on the heat-induced gelation of cod (Gadus morhua, L) actomyosin using response surface methodology. Food Chem 1991, 42 39–55CrossRefGoogle Scholar
  28. Carpene, E.; Veggeti, A.; Mascarello, F. Histochemical fibre types in the lateral muscle of fishes in fresh, brackish and salt water. J. Fish Biol 1982, 20, 379–396CrossRefGoogle Scholar
  29. Chan, J. K.; Gill, T. A.; Paulson, A. T. Cross-linking of myosin heavy chains from cod, herring and silver hake during thermal setting. J. Food Sci 1992a, 57, 906–912CrossRefGoogle Scholar
  30. Chan, J. K.; Gill, T. A.; Paulson, A. T. The dynamics of thermal denaturation of fish myosins. Food Res. Int 1992b, 25 117–123CrossRefGoogle Scholar
  31. Choe, I. S.; Morita, J. I.; Yamamoto, K.; Samejima, K.; Yasui, T. Heat-induced gelation of myosins/subfragments from chicken leg and breast muscles at high ionic strength and low pH. J. Food Sci 1991, 56 884–890CrossRefGoogle Scholar
  32. Cofrades, S.; Careche, M.; Carballo, J.; Colmenero, F. J. Thermal gelation of chicken, pork and hake (Merluccius merluccius, L) actomyosin. Meat Sci. 1997, 47 157–166CrossRefGoogle Scholar
  33. Culioli, J.; Barnier, V.; de Lamballerie, M.; Ouali, A. Propriétés gélifiantes des protéines myofibillaires et de la myosine. Viandes Prod. Carnés 1990, 11 313Google Scholar
  34. Culioli, J.; Boyer, C.; Vignon, X.; Ouali, A. Heat-induced gelation properties of myosin - Influence of purification and muscle type. Sci. Alim 1993, 13 249–260Google Scholar
  35. Daum-Thunberg, D. L.; Foegeding, E. A.; Ball, H. R. Rheological and water-holding properties of comminuted turkey breast and thigh - Effects of initial pH. J. Food Sci 1992, 57 333–337CrossRefGoogle Scholar
  36. Davies, J. R.; Ledward, D. A.; Bardsley, R. G.; Poulter, R. G. Species dependence of fish myosin stability to heat and frozen storage. Int. J. Food Sci. Technol 1994, 29 287–301Google Scholar
  37. Davies, M. L. F.; Johnston, I. A.; Vandewal, J. Muscle fibers in rostral and caudal myotomes of the Atlantic cod (Gadus morhua L) have different mechanical properties. Physiol. Zool 1995, 68 673–697Google Scholar
  38. De Lamballerie, M.; Chraiti, F.; Culioli, J.; Ouali, A. Gelation properties of bovine myofibrillar proteins. Sci. Alim 1993a, 13 237–247Google Scholar
  39. De Lamballerie-Anton, M.; Culioli, J.; Ouali, A.. Gélification thermique des protéines myofibrillaires de dinde. 11th European Symposium on the Quality of Poultry Meat 1993b, 1 300Google Scholar
  40. Egelandsdal, B.; Fretheim, K.; Harbitz, O. Fatty acids and analogs reduce thermal stability and improve gel formability of myosin. J. Food Sci 1985, 50 1399–1402CrossRefGoogle Scholar
  41. Egelansdal, B.; Fretheim, K.; Samejima, K. Dynamic rheological measurements on heat-induced myosin gels: Effects of ionic strengh, protein concentration and the addition of adenosine triphosphate and pyrophosphate. J. Sci. Food Agric 1986, 37, 915–926CrossRefGoogle Scholar
  42. Egelandsdal, B.; Martinsen, B.; Autio, K. Rheological parameters as predictors of protein functionality - A model study using myofibrils of different fiber-type composition. Meat Sci 1995, 39 97–1 l 1CrossRefGoogle Scholar
  43. Fauconneau, B.; Bonnet, S.; Douirin, C.; de Guilbert, C.; Lefèvre, F.; Laroche, M.; Bauvineau, C. Assessment of muscle biochemical and histochemical criteria for flesh quality in salmonids. In Measures for Success P. Kestemont, J. Muir, F. Sevila and P. Williot (Eds). Cemagref Edition, Paris. 1994, p. 225–238Google Scholar
  44. Fauconneau, B.; Alamidurante, H.; Laroche, M.; Marcel, J.; Vallot, D. Growth and meat quality relations in carp. Aquaculture 1995, 129 265–297CrossRefGoogle Scholar
  45. Foegeding, E. A.. Functional properties of turkey salt-soluble proteins. J. Food Sci 1987, 52 1495–1499CrossRefGoogle Scholar
  46. Fretheim, K.; Samejima, K.; Egelandsdal, B. Myosins from red and white bovine muscles: Part-I Gel strength (elasticity) and water-holding capacity of heat-induced gels. J. Food Chem 1986, 22 107–121CrossRefGoogle Scholar
  47. Gann, G. L.; Merkel, R. A. Ultrastructural changes in bovine Longissimus muscle during postmortem ageing. Meat Sci 1978, 2, 129–144CrossRefGoogle Scholar
  48. Gauthier, G. F. Skeletal muscle fiber types. Myology 1986, 1, 255–283Google Scholar
  49. Gauthier, G. F.; Lowey, S.; Benfield, P. A.; Hobbs, A. W. Distribution and properties of myosin isozymes in developing avian and mammalian muscle fibers. J. Cell Biol 1982, 92, 471–484CrossRefGoogle Scholar
  50. Gauvry, L. Le polymorphisme des chaînes lourdes de la myosine du muscle squelettique chez les poissons. Caractérisation d’ADN complémentaires de formes développementales chez la truite et d’un gène thermo-dépendant chez la carpe. Thèse de doctorat de l’Université de Rennes I. 1995Google Scholar
  51. Guo, X. F.; Nakaya, M.; Watabe, S. Myosin subfragment-1 isoforms having different heavy chain structures from fast skeletal muscle of thermally acclimated carp. J. Biochem 1994, 116 728–735Google Scholar
  52. Hastings, R. J.; Keay, J. N.; Young, K. W. The properties of surimi and kamaboko gels from nine British species of fish. Int. J. Food Sci. Technol 1990, 25 281–294CrossRefGoogle Scholar
  53. Hay, J. D.; Currie R. W.; Wolfe, F. H. Effect of postmortem ageing on chicken muscle fibrils. J. Food Sci. 1973, 38, 981CrossRefGoogle Scholar
  54. Hermansson, A. M.; Harbitz, O.; Langton, M. Formation of two types of gels from bovine myosin. J. Sci. Food Agric. 1986, 37, 69–84CrossRefGoogle Scholar
  55. Ishioroshi, M.; Samejima, K.; Yasui, T. Heat-induced gelation of myosin: Factors of pH and salt concentrations. J. Food Sci 1979, 44 1280–1284CrossRefGoogle Scholar
  56. Lshioroshi, M. Samejima, K.; Arie, Y.; Yasui, T.Effect of blocking the myosin-actin interaction in heat-induced gelation of myosin in the presence of actin. Agric. Biol. Chem 1980, 44, 2185–2194CrossRefGoogle Scholar
  57. lshioroshi, M.; Samejima, K.; Yasui, T. Heat-induced gelation of myosin filaments at a low salt concentration. Agric. Biol. Chem 1983, 47, 2809–2816 CrossRefGoogle Scholar
  58. Itoh, Y.; Maekawa, T.; Suwansakornkul, P.; Obatake, A. Seasonal variation of gel-forming characteristics of three lizardfish species. Fish. Sci 1995, 61 942–947CrossRefGoogle Scholar
  59. Jiménez-Colmenero, F.; Careche, J.; Carballo, J.; Cofrades, S. Influence of thermal treatment on gelation of actomyosin from different myosystems. J. Food Sci 1994, 59 211–220CrossRefGoogle Scholar
  60. Joandel-Monier, S. Influence du polymorphisme musculaire sur les propriétés gélifiantes des protéines myofibrillaires. Thèse de doctorat de l’Université de Blaise Pascal - Clermont-Ferrand II. 1997Google Scholar
  61. Johnson, T. P.; Bennett, A. F. The thermal acclimation of burst escape performance in fish: An integrated study of molecular and cellular physiology and organismal performance. J. Exp. Biol 1995, 198 2165–2175Google Scholar
  62. Johnson, T. P.; Bennett, A. F.; Mclister, J. D. Thermal dependence and acclimation of fast start locomotion and its physiological basis in rainbow trout (Oncorhynchus mykiss). Physiol. Zool 1996, 69, 276–292Google Scholar
  63. Johnston, I. A. Biochemistry of myosins and contractile properties of fish skeletal muscle. Mol. Physiol 1982, 2 15–29Google Scholar
  64. Kanoh, S.; Suzuki, T.; Maeyama, K.; Takewa, T.; Watabe, S.; Hashimoto, K. Comparative studies on ordinary and dark muscles of tuna fish. Nippon Suisan Gakkaishi 1986, 52 1807–1816CrossRefGoogle Scholar
  65. Kanoh, S.; Polo, J. M. A.; Kariya, Y.; Kaneko, T.; Watabe, S.; Hashimoto, K. Heat-induced textural and histologi-cal changes of ordinary and dark muscles of yellowfin tuna. J. Food Sci 1988, 53, 673–678CrossRefGoogle Scholar
  66. Karasinski, J. Diversity of native myosin and myosin heavy chain in fish skeletal muscles. Comp. Biochem Physiol 1993, 106B 1041–1047Google Scholar
  67. Kiessling, A.; Storebakken, T.; Asgard, T.; Kiessling, K. H. Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age - I. Growth dynamics. Aquaculture 1991a, 93 335–356CrossRefGoogle Scholar
  68. Kiessling, A.; Kiessling, K. H.; Storebakken, T.; Asgard, T. Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age - II. Activity of key enzymes in energy metabolism. Aquaculture 1991b, 93 357–372CrossRefGoogle Scholar
  69. Kiessling, A.; Larsson, L.; Kiessling, K. H.; Lutes, P. B.; Storebakken, T.; Hung, S. S. S. Spawning induces a shift in energy metabolism from glucose to lipid in rainbow trout white muscle. Fish Physiol. Biochem 1995, 14 439–448CrossRefGoogle Scholar
  70. Kijowski, J. M.; Mast, M. G. Thermal properties of proteins in chicken broiler tissue. J. Food Sci 1988, 2, 363–366CrossRefGoogle Scholar
  71. Kim, S. H.; Carpenter, J. A.; Lanier, T. C.; Wicker, L. Setting response of Alaska pollock surimi compared with beef myofibrils. J. Food Sci 1993, 58 531–534CrossRefGoogle Scholar
  72. Laborde, D.; Talmant, A.; Monin, G. Activités enzymatiques métaboliques et contractiles de 30 muscles du porc. Relations avec le pH ultime après la mort. Reprod. Nutr. Dévelop 1985, 25 619–628CrossRefGoogle Scholar
  73. Lan, Y. H.; Novakofski, J.; McCusker, R. H.; Brewer, M. S.; Carr, T. R.; McKeith, F. K. Thermal gelation of pork, beef, fish, chicken and turkey muscles as affected by heating rate and pH. J. Food Sci 1995a, 60 936–940, 945CrossRefGoogle Scholar
  74. Lan, Y. H.; Novakofski, J.; McCusker, R. H.; Brewer, M. S.; Carr, T. R.; McKeith, F. K. Thermal gelation of myofibrils from pork, beef, fish, chicken and turkey. J Food Sci 1995b, 60 941–945CrossRefGoogle Scholar
  75. Lan, Y. H.; Novakofski, J.; McCusker, R. H.; Brewer, M. S.; Can, T. R.; McKeith, F. K. Thermal gelation proper-ties of protein fractions from pork and chicken breast muscles. J. Food Sci 1995c, 60 742–747CrossRefGoogle Scholar
  76. Lan, Y. H.; Novakofski, J.; McCusker, R. H.; Brewer, M. S.; Carr, T. R.; McKeith, F. K Initial post-mortem por-cine muscle pH effect on heat-induced gelation properties. J. Muscle Food 1995d, 6 403–412CrossRefGoogle Scholar
  77. Lavelle, C. L.; Foegeding, E. A. Gelation of turkey breast and thigh myofibrils - Effects of pH, salt and tempera-ture. J. Food Sci 1993, 58 727–730CrossRefGoogle Scholar
  78. Lefaucheur, L.; Vigneron, P. Post-natal changes in some histochemical and enzymatic characteristics of three pig muscles. Meat Sci 1986, 16 199–216CrossRefGoogle Scholar
  79. Lefèvre, F. Propriétés thermogélifiantes des myofibrilles et texture de la chair de truite. Thèse de doctorat de l’Université de Blaise Pascal - Clermont-Ferrand 11. 1997Google Scholar
  80. Lefevre, F.; Fauconneau, B.; Ouali, A.; Culioli, J. Thermal gelation of brown trout myofibrils: Effect of muscle type, heating rate and protein concentration. J. Food Sci 1998, 63 299–304CrossRefGoogle Scholar
  81. Lepetit, J.; Sale, P.; Ouali, A. Postmortem evolution of rheological properties of the myofibrillar structure. Meat Sci 1986, 16, 161–168CrossRefGoogle Scholar
  82. Liu, G.; Xiong, Y. L. L. Contribution of lipid and protein oxidation to rheological differences between chicken white and red muscle myofibrillar proteins. J. Agric. Food Chem 1996, 44 779–784CrossRefGoogle Scholar
  83. Liu, M. N.; Foegeding, E. A.; Wang, S. F.; Smith, D. M.; Davidian, M. Denaturation and aggregation of chicken myosin isoforms. J. Agric. Food Chem 1996, 44 1435–1440CrossRefGoogle Scholar
  84. Liu, M. N.; Foegeding, E. A. Thermally induced gelation of chicken myosin isoforms. J. Agric. Food Chem 1996, 44 1441–1446CrossRefGoogle Scholar
  85. Lo, J. R.; Mochizuki, Y.; Nagashima, Y.; Tanaka, M.; Iso, N.; Taguchi, T. Thermal transitions of myosins subfragments from black marlin (Makaira mazara) ordinary and dark muscles. J. Food Sci 1991, 56 954–957CrossRefGoogle Scholar
  86. Lowey, S.; Benfield, P. A.; Gauthier G. F.; Leblanc, D. D.; Waller, G. S. Myosin isozymes in avian skeletal muscles. Sequential expression of myosin isozymes in developing chicken pectoralis muscles. J. Muscle Res. Cell Motil. 1983, 4, 695–716CrossRefGoogle Scholar
  87. Martinez, I.; Ofstad, R.; Olsen, R. L. Intraspecific myosin light chain polymorphism in the white muscle of herring (Clupea harengus harengus L.). Febs Lett 1990, 265 23–26CrossRefGoogle Scholar
  88. Martinez, I.; Christiansen, J. S.; Ofstad, R.; Olsen, R. L. Comparison of myosin isoenzymes present in skeletal and cardiac muscles of the Arctic chan Salvelinus alpinus (L.). Eur J. Biochem 1991, 195 743–753CrossRefGoogle Scholar
  89. Martinez, I.; Bang, B.; Hatlen, B.; Blix, P. Myofibrillar proteins in skeletal muscles of parr, smolt and adult Atlantic salmon (Salmo salar L.). Comparison with another salmonid, the Arctic chan Salvelinus alpinus (L.). Comp. Biochem. Physiol 1993, 106B 1021–1028Google Scholar
  90. Monin, G.; Ouali, A. Muscle differentiation and meat quality. In “Developments in Meat Science”, Edited by Ralston Lawrie, 1991, 5, 89–157Google Scholar
  91. Montejano, J. G.; Hamann, D. D.; Lanier, T. C. Final strengths and rheological changes during processing of thermally induced fish muscle gels. J. Rheol 1983, 27 557–579CrossRefGoogle Scholar
  92. Montejano, J. G.; Hamann, D. D.; Lanier, T. C. Thermally induced gelation of selected comminuted muscle systems - Rheological changes during processing, final strengths and microstructure. J. Food Sci 1984, 49 1496–1505CrossRefGoogle Scholar
  93. Morioka, K.; Shimizu, Y. Contribution of sarcoplasmic proteins to gel formation of fish meat. Nippon Suisan Gakkaishi 1990, 56 929–933CrossRefGoogle Scholar
  94. Morita, J. I.; Choe, I. S.; Yamamoto, K.; Samejima, K.; Yasui, T. Heat-induced gelation of myosin from leg and breast muscles of chicken. Agric. Biol. Chem 1987, 51 2895–2900CrossRefGoogle Scholar
  95. Nakaya, M.; Kakinuma, M.; Watabe, S.; Ooi, T. Differential scanning calorimetry and CD spectrometry of acclimation temperature-associated types of carp light meromyosin. Biochem 1997, 36 9179–9184CrossRefGoogle Scholar
  96. Nakayama, T.; Sato, Y. Relationship between binding quality of meat and myofibrillar proteins: (IV) Contribution of native tropomyosin and actin in myosin B to rheological properties of heat set minced-meat gel. J. Texture Stud 1971, 2 475–488CrossRefGoogle Scholar
  97. Ndi, E. E.; Brekke, C. J. Thermal gelation of duck breast and leg muscle proteins. J. Muscle Food 1994, 5 27–36. Niwa, E.; Sato, K.; Suzuki, R.; Nakayama, T.; Hamada, I. Fluorometric study of setting properties of fish flesh sol. Bull. Jpn. Soc. Sci. Fish 1981, 47 817–821CrossRefGoogle Scholar
  98. Niwa, E. Chemistry of Surimi Gelation. In “Surimi Technology”, Lanier T.C. and Lee C.M. Eds. New York, USA. 1992: 389–427Google Scholar
  99. Niwa, E.; Matsuura, Y.; Nowsad, A. A. K.; Kanoh, S. Species-specificity of suwari gel-formability of fish flesh paste in which transglutaminase was inactivated. Fish. Sci 1995, 61 107–109CrossRefGoogle Scholar
  100. Northcutt, J. K.; Lavelle, C. L.; Foegeding, E. A. Gelation of turkey breast and thigh myofibrils: Changes during isolation of myofibrils. J Food Sci 1993, 58 983–986CrossRefGoogle Scholar
  101. Nowsad, A. A. K.; Kanoh, S.; Niwa, E. Setting of transglutaminase-free actomyosin paste prepared from Alaska pollack surimi. Fish. Sci 1994, 60 295–297Google Scholar
  102. Ouali, A.; Gatellier, P.; Dufour, E. Caractérisation des propriétés hydrophobes de la myosine de differents types musculaires. Viandes et Produits Carnés 1988, 9, 198Google Scholar
  103. Ouali, A. Meat tenderization: Possible causes and mechanisms. A review. J. Muscle Foods 1990, 1, 129–165CrossRefGoogle Scholar
  104. Ouali, A. Sensitivity to ionic strength of Mg-Ca enhanced ATPase activity as an index of myofibrillar ageing in beef. Meat Sci 1984, 11,79–85.CrossRefGoogle Scholar
  105. Park, S.; Brewer, M. S.; Mckeith, F. K.; Bechtel, P. J.; Novakofski, J. Salt, cryoprotectants and preheating tem-perature effects on surimi-like material from beef or pork. J. Food Sci 1996a, 61 790–795CrossRefGoogle Scholar
  106. Park, S.; Brewer, M. S.; Novakofski, J.; Bechtel, P. J.; Mckeith, F. K. Process and characteristics for a surimi-like material made from beef or pork. J. Food Sci 1996b, 61 422–427CrossRefGoogle Scholar
  107. Parsons, N.; Knight, P. Origin of variable extraction of myosin from myofibrils treated with salt and pyrophosphate. J. Sci. Food Agric 1990, 51, 71–90 CrossRefGoogle Scholar
  108. Peter, J. B.; Barnard, R. J.; Edgerton, V. R.; Gillespie, C. A.; Stempel, K. E. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochem 1972, 11 2627–2633CrossRefGoogle Scholar
  109. Petersen, J.S.; Henckel, P.; Maribo, H.; Oksbjerg, N., Sorensen, M.T. Muscle metabolic traits, post mortem-pH-decline and meat quality in pigs subjected to regular physical training and spontaneous activity. J. Muscle Foods 1997, 46, 259–275Google Scholar
  110. Pette, D.; Staron, R. S. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev. Physiol. Biochem. Pharmacol 1990, 116 1–76Google Scholar
  111. Reiser, P. T.; Moss, R. L.; Giulian, G. G.; Greaser, M. Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. J. Biol. Chem 1985, 260, 9077–9080Google Scholar
  112. Remignon, H.; Gardahaut, M.F.; Marche, G.; Ricard, F.H. Selection of rapid growth increases the number and the size of muscle fibres without changing their typing in chicken. J. Muscle Res. Cell Motil 1995, 16, 95–102CrossRefGoogle Scholar
  113. Robe, G. H.; Xiong, Y. L. L. Dynamic rheological studies on salt-soluble proteins from three porcine muscles. Food Hydrocolloids 1993, 7 137–146CrossRefGoogle Scholar
  114. Robson, R. M. Myofibrillar and cytoskeletal structures and proteins in mature skeletal muscle cells. In “Expression of tissue proteinases and regulation of protein degradation as related to meat quality” (A. Ouali, D. Demeyer and F. J. M. Smulders Eds). ECCEAMST, Utrecht, The Netherlands. 1995, 267–288Google Scholar
  115. Roura, S. I.; Crupkin, M. Biochemical and functional properties of myofibrils from pre-and post-spawned hake (Merluccius hubbsi Marini) stored on ice. J. Food Sci 1995, 60 269–272CrossRefGoogle Scholar
  116. Rushbrook, J. I.; Huang, J. M.; Weiss, C.; Siconolfibaez, L.; Yao, T.,T.; Becker, E.; Feueruran, M. Characterization of the myosin heavy chains of avian fast skeletal muscles at the protein and mRNA levels. J. Muscle Res. Cell Motil 1997, 18, 449–463CrossRefGoogle Scholar
  117. Samejima, K.; Ishioroshi, M.; Yasui, T. Heat induced gelling properties of actomyosin: Effect of tropomyosin and troponin. Agric. Biol. Chem 1982, 46 535–540CrossRefGoogle Scholar
  118. Samejima, K.; Yamauchi, H.; Asghar, A.; Yasui, T. Role of myosin heavy chains from rabbit skeletal muscle in the heat-induced gelation mechanism. Agric.Biol.Chem 1984, 48 2225–2232CrossRefGoogle Scholar
  119. Samejima, K.; Oka, Y.; Yamauchi, H.; Asghar, A.; Yasui, T. Effects of temperature, actin-myosin ratio, pH, and salt and protein concentrations on heat-induced gelling of cardiac myosin and reconstituted actomyosin. Agric. Biol. Chem 1986, 50 2101–2110CrossRefGoogle Scholar
  120. Samejima, K.; Kuwayama, K.; Yamamoto, K.; Asghar, A.; Yasui, T. Influence of reconstituted dark and light chicken muscle myosin filaments on the morphology and strength of heat-induced gels. J. Food Sci 1989, 54, 1158–1168 CrossRefGoogle Scholar
  121. Samejima, K.; Ishioroshi, M.; and Livera, W. C. D. Effect of added fatty acids on heat-induced gelation of myosin. 36th Int. Cong. Meat Sci. Technol 1990, 1 306–311Google Scholar
  122. Sano, T.; Noguchi, S. F.; Tsuchiya, T.; Matsumoto J. J. Dynamic viscoelastic behavior of natural actomyosin and myosin during thermal gelation. J. Food Sci 1988, 53 924–928CrossRefGoogle Scholar
  123. Sano, T.; Noguchi, S. F.; Matsumoto, J. J.; Tsuchiya, T. Role of F-actin in thermal gelation of fish actomyosin. J. Food Sci 1989, 54 800–804CrossRefGoogle Scholar
  124. Schiaffino, S.; Salviati, G. Molecular diversity of myofibrillar proteins: Isoforms analysis at the protein and mRNA level. Methods in Cell Biology Edited by Emerson, C.P. and Sweeney, H.L. Academic Press Inc. 1998, 52 349–369Google Scholar
  125. Shimizu, Y.; Wendakoon, C. N. Effects of maturation and spawning on the gel-forming ability of lizardfish (Saurida elongata) muscle tissues. J.Sci. Food Agric 1990, 52 331–338CrossRefGoogle Scholar
  126. Shimizu, Y.; Machida, R.; Takenami, S. I. Species variations in the gel-forming characteristics of fish meat paste. Nippon Suisan Gakkaishi 1981, 47 95–104CrossRefGoogle Scholar
  127. Skaara, T.; Regenstein, J. M. The structure and properties of myofibrillar proteins in beef, poultry, and fish. J. Muscle Foods 1990, 1, 269–291CrossRefGoogle Scholar
  128. Smith, D. M. Factors influencing heat-induced gelation of muscle proteins. In “Interactions of Food Proteins” (N. Parris and R. Barford, Eds) ACS Symp. Ser., USA. 1991, 454 243–256CrossRefGoogle Scholar
  129. Sreter, F. A.; Balint, M.; Gergely, J. Structural and functional changes of myosin during development. Comparison with adult fast, slow and cardiac myosin. Dev. Biol 1975, 46,317–325CrossRefGoogle Scholar
  130. Stabursvik, E.; Martens, H. Thermal denaturation of proteins in Post rigor muscle tissue as studied by thermal scanning calorimetry. J. Sc. Food Agric 1980, 31, 1034–1042CrossRefGoogle Scholar
  131. Stickland, N. C. Growth and development of muscle fibres in the rainbow trout (Salmo gairdneri). J. Anat 1983, 137, 323–333 Google Scholar
  132. Stone, A. P.; Stanley, D. W. Mechanisms of fish muscle gelation. Food Res. Int 1992, 25 381–388CrossRefGoogle Scholar
  133. Taguchi, T.; Lo, J. R.; Tanaka, M.; Nagashima, Y.; Amano, K. Thermal activation of actomyosin Mg-ATPases from ordinary and dark muscles of tuna and sardine. J. Food Sci 1989, 54 1521–1523,1529Google Scholar
  134. Talmant, A.; Briand, M.; Briand, Y.; Monin, G.; Durand, R. Metabolic type of muscles of the sheep. III. Evolution with age and influence of sex. Eut: J. Appl. Phrsiol 1982, 49 197–208CrossRefGoogle Scholar
  135. Tanaka, M.; Lo, J. R.; Yang, C. C.; Nagashima, Y.; Taguchi, T. Thermal gelation of dark meat and myosin pastes from sardine and tuna. J. Tokyo Univ Fish 1988, 75 257–261Google Scholar
  136. Tejada, M. Gelation of myofibrillar fish proteins. Rev. Esp. Cienc. Tecnol. Alim 1994, 34 257–273Google Scholar
  137. Totland, G.K.; Kryvi, H. Distributions patterns of muscle fibre types in major muscles of the bull (Bos taunts). Anat. Embryol 1991, 184 441–450CrossRefGoogle Scholar
  138. Vigneron, P.; Bacou, F.; Nougues, J.; Lefaucheur, L. Croissance et développement des fibres musculaires: Facteurs de variation. Viande et produits carnés 1983, Special Issue, 7–15 Google Scholar
  139. Watabe, S.; Hashimoto, K. Myosins from white and dark muscles of mackerel - Some physico-chemical and enzymatic properties. J. Biochem 1980, 87, 1491–1499 Google Scholar
  140. Watabe, S.; Maruyama, J.; Hashimoto, K. Myofibrillar ATPase activity of mackerel ordinary and dark muscles. Nippon Suisan Gakkaishi 1983, 49 655Google Scholar
  141. Watabe, S.; Hwang, G.C.; Nakaya, M.; Guo, X.F.; Okamoto, Y. Fast skeletal myosin isoforms in thermally acclimated carp. J. Biochem. Tokyo 1992, 111 113–122Google Scholar
  142. Whalen, R. G., Sell, S. M., Butler-Browne, G. S., Schwartz, K.; Bouveret, P., Pinset-Härström, I. Three myosin heavy chains isozymes appear sequentially in rat muscle development. Nature 1981, 292, 805–809CrossRefGoogle Scholar
  143. Wicker, L.; Lanier, T. C.; Hamann, D. D.; Akahane, T. Thermal transitions in myosin-ANS fluorescence and gel ri-gidity. J. Food Sci 1986, 51 1540–1543CrossRefGoogle Scholar
  144. Wu, M. C.; Lanier, T. C.; Hamann, D. D. Rigidity and viscosity changes of croaker actomyosin during thermal gelation. J. Food Sci 1985, 50 14–19CrossRefGoogle Scholar
  145. Xiong, Y. L. Thermally induced interactions and gelation of combined myofibrillar protein from white and red broiler muscles. J. Food Sci 1992, 57 581–585CrossRefGoogle Scholar
  146. Xiong, Y. L. Myofibrillar protein from different muscle fiber types - Implications of biochemical and functional properties in meat processing. Crit. Rev. Food Sci. Nut 1994, 34, 293–320CrossRefGoogle Scholar
  147. Xiong, Y. L. Structure-function relationships of muscle proteins. In “Food Proteins and their Applications” (S. Damodaran and A. Paraf, Eds) Marcel Dekker, Inc, New York, USA. 1997, 341–392Google Scholar
  148. Xiong, Y. L.; Brekke, C. J. Physicochemical and gelation properties of pre-and postrigor chicken salt-soluble proteins. J. Food Sci 1990, 55 1544–1548CrossRefGoogle Scholar
  149. Xiong, Y. L.; Brekke, C. J. Protein extractability and thermally induced gelation properties of myofibrils isolated from prerigor and postrigor chicken muscles. J. Food Sci 1991, 56 210–215CrossRefGoogle Scholar
  150. Xiong, Y.L.; Blanchard, S.P.; Means, W.J. Properties of broiler myofibril gels containing emulsified lipids. Poultry Sci 1992, 71 1548–1555CrossRefGoogle Scholar
  151. Xiong, Y. L.; Brekke, C. J.; Leung, H. K. Thermal denaturation of muscle proteins from different species and mus-cle types as studied by differential scanning calorimetry. Can. Inst. Food Sci. Technol. J 1987, 5,357–362Google Scholar
  152. Yamamoto, K.; Samejima, K.; Yasui, T. The structure of myosin filaments and the properties of heat-induced gel in the presence and absence of C-protein. Agric. Biol. Chem 1987, 51 197–203CrossRefGoogle Scholar
  153. Yasui, T.; Samejima, K. Recent advance in meat science in Japan - Functionality of muscle proteins in gelation mechanism of structured meat products. JARQ-Japan Agricultural Research Quaterly 1990, 24 I31–140Google Scholar
  154. Yasui, T.; Ishioroshi, M.; Samejima, K. Effect of actomyosin on heat-induced gelation of myosin. Agric. Biol. Chem 1982, 46 1049–1059CrossRefGoogle Scholar
  155. Young, O. A.; Torley, R J.; Reid, D. H. Thermal scanning rheology of myofibrillar proteins from muscles of defined fibre type. Meat Sci 1992, 32 45–63CrossRefGoogle Scholar
  156. Zhang, G. X.; Swank, D. M.; Rome, L. C. Quantitative distribution of muscle fiber types in the scup Stenotomus chrysops. J. Morphol 1996, 229 71–81CrossRefGoogle Scholar
  157. Zamora, F.; Debiton, E.; Lepetit, J.; Lebert, A.; Dransfield, E.; Ouali, A. Predicting variability of ageing and toughness in beef M. longissimus lumborum et thoracis. Meat Sci 1996, 43, 321–333Google Scholar
  158. Ziegler, G. R.; Foegeding, E. A. The gelation of proteins. In “Advances in Food and Nutrition Research” Kinsella, J.E. Ed. New York Academic Press. 1990, 34 203–298Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • F. Lefèvre
    • 1
  • J. Culioli
    • 2
  • S. Joandel-Monier
    • 2
  • A. Ouali
    • 2
  1. 1.Laboratoire de Physiologie des PoissonsINRARennes CedexFrance
  2. 2.Station de Recherches sur la ViandeINRA Centre de Clermont-Ferrand-TheixSaint-Genès ChampanelleFrance

Personalised recommendations