The Role of Proteins in Water-Holding Capacity of Meat

  • Riëtte L. J. M. van Laack


Water-holding capacity (WHC) is the ability of meat to hold on to its own water. In fresh meat, WHC is expressed as drip or purge. As approximately 85% of the water (75g/100g) in living muscle is present in the cell, changes in the volume of myofibrils will result in changes in the WHC of meat. In PSE (Pale, Soft, Exudative) pork, myosin denaturation, resulting in myofibrillar shrinkage, is related to high drip losses. However, in so-called RSE (Red, Soft, Exudative) pork, high drip losses cannot be explained by myosin denaturation. Compared to normal pork, denaturation of sarcoplasmic proteins is increased in RSE meat. This suggests a role of sarcoplasmic proteins in WHC. Addition of sarcoplasmic extract to myofibrils results in an increased WHC. Denaturation of the sarcoplasmic proteins results in a reduction of this WHC-enhancing effect. Thus, it seems that sarcoplasmic proteins play an important role in WHC. This information may help to determine the origin of RSE meat


Meat Quality Myofibrillar Protein Myosin Head Filament Spacing Drip Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Addis, P.B. Poultry muscle as a food. In Muscle as Food; Bechtel, P.J., Ed.; Academic Press, Orlando, 1986; pp 372–401Google Scholar
  2. Arteaga, G.E.; Nakai, S. Thermal denaturation of turkey breast myosin under different conditions: effect of ternperature and pH, and reversibility of denaturation. Meat Sci 1992, 31 191–200CrossRefGoogle Scholar
  3. Bendall, J.R.; Wismer-Pedersen, J. Some properties of the fibrillar proteins of normal and watery pork muscle. J. Food Sci 1962, 27 144–159CrossRefGoogle Scholar
  4. Currie, R.W.; Wolfe, F.H. Rigor related changes in mechanical properties (tensile and adhesive) and extracellular space in beef muscle. Meat Sci 1980, 4 123–144CrossRefGoogle Scholar
  5. Currie, R.W.; Wolfe, F.H. An assessment of extracellular space measurements in post-mortem muscle. Meat Sci 1983, 8 147–161CrossRefGoogle Scholar
  6. Diesbourg, L.; Swatland, H.J.; Millman, B.M. X-ray diffraction measurement of post mortem changes in the myofilament lattice of pork. J. Anim. Sci 1988, 66 1048–1054Google Scholar
  7. Den Hartog, M.J.A. The water-holding capacity of fresh meat Ph.D. thesis, University of Utrecht, The Netherlands, 1997Google Scholar
  8. Fjelkner-Modig, S.; Tornberg, E. Water distribution in porcine M. longissimus dorsi in relation to sensory properties. Meat Sci 1986, 17 213–231CrossRefGoogle Scholar
  9. Garssen, G.J.; Geesink, G.H.; Hoving-Bolink, A.H.; Verplanke, J.C. Effects of dietary clenbuterol and salbutemol on meat quality in veal calves. Meat Sci 1995, 90 337–350CrossRefGoogle Scholar
  10. Geesink, G.H.; Smulders, F.J.M.; van Laack, H.L.J.M.; van der Kolk, J.H.; Wensing, T.; Breukink, H.J. Effects on meat quality of the use of clenbuterol in veal calves. J. Anim. Sci 1993, 71 1161–1170Google Scholar
  11. Grey, T.C.; Jones, J.M.; Robinson, D.S. The influence of death struggel on the rate of glycolysis in chicken breast muscle. J. Sci. Food Agric 1974, 25 57–66CrossRefGoogle Scholar
  12. Hamm, R. Über das Wasserbindungsvermögen des Säugetiermuskels. Z. Lebensmittel-Untersuch. Forsch 1962, 117 8–20CrossRefGoogle Scholar
  13. Hamm, R. Kolloidchemie des Fleisches. Publ. Paul Parey, Berlin, 1972Google Scholar
  14. Hamm, R. Functional properties of the myofibrillar system and their measurement. In Muscle as Food; Bechtel, P.J., Ed.; Academic Press, Orlando, 1986; pp 135–199Google Scholar
  15. Irving, T.C.; Swatland, H.J.; Millman. B.M. Effect of pH on myofilament spacing in pork measured by X-ray diffraction. Can. Inst. Food Sci. Technol 1990, 23 79–81Google Scholar
  16. Jacobson, A.L.; Henderson, J. Temperature sensitivity of myosin and actomyosin. Can. J. Biochem 1973, 51 71–86CrossRefGoogle Scholar
  17. Joo, S.T.; Kauffman, R.G.; Lee, S.; Kim, B.C.; Kim, C.J.; Greaser, M.L. Variation in water loss of PSE pork mus-culature over time. Proc. 41 Int. Congr. Meat Sci. Technol., San Antonio, Texas 1995; pp 658–659Google Scholar
  18. Kauffman, R.G.; Cassens, R.G.; Scherer, A.; Meeker, D.L. Variations in pork quality. National Pork Producers Council publication, Des Moines: IA, 1992Google Scholar
  19. Kauffman, R.G.; Sybesma, W.; Smulders, F.J.M.; Eikelenboom, G.; Engel, B.; van Laack, R.L.J.M.; HovingBolink, A.H., Sterrenburg, P.; Nordheim, E.V.; Walstra, P.; van der Wal, P. The effectiveness of examining early post-mortem musculature to predict ultimate pork quality. Meat Sci 1993, 34 283–300CrossRefGoogle Scholar
  20. Kijowski, J.; Niewiarowicz, A.; Kujawska-Biernat, B. Biochemical and technological characteristics of hot chick.en meat. J. Fd Technol 1982, 17,553–560CrossRefGoogle Scholar
  21. Lane, J.L. The effect of different pH values and temperature on the denaturation of red and white myofibrils from pork and poultry as incubated at different concentrations of ATP M.S. thesis, University of Tennessee-Knoxville, 1997Google Scholar
  22. Larsson, G.; Tornberg, E. An attempt to relate meat quality of pork (M. longissimus dorsi) to meat structure. Proc. 34th Int. Congr. Meat Sci Technol.,Brisbane, Australia, 1988Google Scholar
  23. Liu, C.-H; van Laack, R. Characteristics of pale, soft, exudative (PSE) broiler breast muscle. Book of Abstracts 1998 IFT Annual Meeting 1998 Abstract 15–4Google Scholar
  24. Lopez-Bote, C.; Warriss, P.D.; Brown, S.N. The use of muscle protein solubility measurements to assess pig lean meat quality. Meat Sci 1989, 26 167–175CrossRefGoogle Scholar
  25. Monin, G.; Laborde, P. Waterholding capacity of pig muscle proteins: Interaction between the myofibrillar and sarcoplasmic compounds. Sci. Aliments 1985, 5,341–345Google Scholar
  26. Offer, G. Modelling of the formation of pale, soft and exudative meat: Effects of chilling regime and rate and extent of glycolysis. Meat Sci 1991, 30 157–184CrossRefGoogle Scholar
  27. Offer, G.; Knight, P. The structural basis of water-holding in meat. In Developments in Meat Science-4; Lawrie, R., Ed.; Elsevier Appl. Sci.: London, 1988; pp 63–243Google Scholar
  28. Offer, G.; Cousins, T. The mechanisms of drip production: Formation of two compartments of extracellular space in muscle post mortem. J. Food Sci. Agric 1992, 58 107–116CrossRefGoogle Scholar
  29. Offer, G.; Knight, P.; Jeacocke, R.; Almond, R.; Cousins, T.; Elsey, J.; Parsons, N.; Sharp, A.; Starr, R.; and Purs-low, P. The structural basis of the water-holding, appearance and toughness of meat and meat products. Food Microstructure 1989, 8 151–170Google Scholar
  30. Penny, I.F. 1969. Protein denaturation and water-holding capacity in pork muscle. J. Food Technol 1969, 4 269–273Google Scholar
  31. Penny, I.F. 1977. The effect of temperature on the drip, denaturation and extracellular space of pork Longissimus dorsi muscle. J. Sci. Fd. Agric 1977, 28 329–338CrossRefGoogle Scholar
  32. Pietrzak, M.; Greaser, M.L.; Sosnicki, A.A. Effect of rapid rigor mortis processes on protein functionality in Pectoralis Major muscle of domestic turkeys. J. Anim. Sci 1997, 75,2106–2116Google Scholar
  33. Renou, J.P.; Monin, G.; Sellier, P. Nuclear magnetic resonance measurement on pork of various qualities. Meat Sci 1985, 15 225–233CrossRefGoogle Scholar
  34. Scopes, R.K. The influence of post-mortem conditions on the solubilities of muscle proteins. Biochem. J 1964, 91 201–207Google Scholar
  35. Scopes, R.K. Post mortem lability of skeletal muscle proteins. Nature 1963, 197 1202–1203CrossRefGoogle Scholar
  36. Starburvik, E.; Fretheim, K.; Freystein, T. Myosin denaturation in pale, soft and exudative (PSE) procine muscle tissue as studied by differenctial scanning calorimetry. J. Sci. Fd. Agric 1984, 35 240–244CrossRefGoogle Scholar
  37. Tornberg, E.; Andersson, A.; von Seth, G. Water distribution of raw pork muscle (M. longissimus dorsi) of different meat qualities. Proc. 39th Int. Congr Meat Sci. Technol Calgary Canada, 1993, S4P23.WPGoogle Scholar
  38. Van Laack, R.L.J.M., Kauffman, R.G., Sybesma, W., Smulders, F.J.M., Eikelenboom, G. and Pinheiro, J.C. Is colour brightness (L-value) a reliable indicator of water-holding capacity in porcine muscle? Meat Sci 1994, 38 193–201CrossRefGoogle Scholar
  39. Van Laack, R.L.J.M.; Smulders, F.J.M. On the assessment of water-holding capacity of hot-vs cold boned pork. Meat Sci 1992, 32 139–148CrossRefGoogle Scholar
  40. Warner, R.D. Physical properties of porcine musculature in relation to post mortem biochemical changes in muscle proteins Ph.D. thesis, University of Wisconsin-Madison, 1994Google Scholar
  41. Warriss, P.D.; Brown, S.N. The relationship between initial pH, reflectance, and exudation in pig muscle. Meat Sci 1987, 20 65–74CrossRefGoogle Scholar
  42. Wilson, G.G. Ill.; van Laack, R. The effect of sarcoplasmic protein on water-holding capacity of pork. Book ofAbstracts 1998 IFT Annual Meeting 1998 Abstract 46C-3Google Scholar
  43. Winger, R.J.; Pope, C.G. Osmotic properties of post-rigor beef muscle. Meat Sci. 1980–81, 5, 355–369CrossRefGoogle Scholar
  44. Wismer-Pedersen, J. Neuere Fortschritte in der Interpretation der Qualität von Schweinefleisch. Fleischwirtsch 1963, 15 409Google Scholar
  45. Wismer-Pedersen, J. Water. In The Science of Meat and Meat Products Price, J.F., Schweigert, B.S. Eds.; W.H. Freeman and Company, San Francisco. 1978Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Riëtte L. J. M. van Laack
    • 1
  1. 1.Department of Food Science and TechnologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations