Advertisement

Postmortem Mechanisms of Meat Tenderization

The Roles of the Structural Proteins and the Calpain System
  • Elisabeth Huff-Lonergan
  • Steven M. Lonergan

Abstract

The conversion of muscle to meat is a complex process resulting in a set of conditions in postmortem muscle that are vastly different from those in living tissue. Efforts designed to understand the mechanism of postmortem meat tenderization must first define the postmortem biology of muscle tissue. Postmortem meat tenderization is associated with myofibrillar protein degradation. The protease µ-calpain and its endogenous inhibitor calpastatin are implicated as major causative agents/regulators of myofibrillar protein degradation. The interaction between g-calpain, calpastatin and myofibrillar protein substrates is complex, and, on a whole, poorly understood. Postmortem conditions of relatively low temperature, low pH and relatively high ionic strength create conditions which can alter protein conformation and protein interactions. Information regarding post-translational modification and environmentally induced conformational changes of both the calpain system and its substrate proteins can yield important information regarding postmortem meat tenderization

Keywords

Thin Filament Myofibrillar Protein Meat Tenderization Calpain System Bovine Skeletal Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, Y.; lshida-Takahashi, A.; Takahashi, C.; Takano, E.; Murachi, T.; Hatanaka, M. Phosphorylation and sub-cellular distribution of calpastatin in human hematopoietic system cells. J. Biol. Chem 1991 266,3968–3972Google Scholar
  2. Balcerzak, D.; Poussard, S.; Brustis, J. J.; Elamrani, N.; Soriano, M.; Cottin, P.; Ducastaing, A. An antisense ohgodeoxyribonucleotide to m-calpain mRNA inhibits myoblast fusion. J. Cell Sei 1995 108,2077–2082Google Scholar
  3. Barnoy, S.; Glaser, T.; Kosower, N. S. Calpain and calpastatin in myoblast differentiation and fusion: effects of inhibitors. Biochim. Biophys. Acta 1997 1358,181–188Google Scholar
  4. Barnoy, S.; Glaser, T.; Kosower, N. S. The calpain-calpastatin system and protein degradation in fusing myoblasts. Biochim. Biophys. Acta 1998 1402,52–60Google Scholar
  5. Barnoy, S.; Glasner, T.; Kosower, N. S. The role of calpastatin (the specific calpain inhibitor) in myoblast differentiation and fusion. Biochem. Biophys. Res. Commun 1996 220,933–938Google Scholar
  6. Barrett, M. J.; Goll, D. E.; Thompson, V. F. Effect of substrate on Ca2(+)-concentration required for activity of the Ca2(+)-dependent proteinases, mu-and m-calpain. Life Sci 199148,1659–1669Google Scholar
  7. Belkin, A. M.; Zhidkova, N. L.; Koteliansky, V. E. Localization of talin in skeletal and cardiac muscles. FEBS Lett 1986 200,32–36Google Scholar
  8. Bergen, W. G.; Merkel, R. A. Protein Accretion. In Growth Regulation in Farm Animals; A. M. Pearson and T. R. Dutson, Eds.; Elsever Applied Science: New York, N.Y., 1991Google Scholar
  9. Boyer-Berri, C.; Greaser, M. L. Effect of postmortem storage on the Z-line region of titin in bovine muscle. J. Anim. Sci 199876,1034–1044Google Scholar
  10. Byers, T. J.; Kunkel, L. M.; Watkins, S. C. The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. J. Cell Biol 1991 115,411–421Google Scholar
  11. Cockett, N. E.; Jackson, S. P.; Shay, T. L.; Nielsen, D.; Moore, S. S.; Steele, M. R.; Barendse, W.; Green, R. D.; Georges, M. Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proc. Natl. Acad. Sci. USA 1994 91,3019–3023Google Scholar
  12. Cockett, N. E.; Jackson, S. P.; Snowder, G. D.; Carpenter, C. E. Characterization of the callipyge trait in sheep. Proc. Recip. Meat Conf 1996. 49 102–105Google Scholar
  13. Cong, J.; Goll, D. E.; Peterson, A. M.; Kapprell, H. P. The role of autolysis in activity of the Ca’-dependent proteinases (mu-calpain and m-calpain). J. Biol. Chem.1989 264, 10096–10103Google Scholar
  14. Cong, J.; Thompson, V. F.; Goll, D. E. Effect of monoclonal antibodies specific for the 28-kDa subunit on catalytic properties of the calpains. J. Biol. Chem 1993 268,25740–25747Google Scholar
  15. Cong, M.; Thompson, V. F.; Goll, D. E.; Antin, P. B. The bovine calpastatin gene promoter and a new N-terminal region of the protein are targets for cAMP-dependent protein kinase activity. J. Biol. Chem 1998 273, 660–666Google Scholar
  16. Cottin, P.; Brustis, J. J.; Poussard, S.; Elamrani, N.; Broncard, S.; Ducastaing, A. Ca(2+)-dependent proteinases (calpains) and muscle cell differentiation. Biochim. Biophys. Acta 1994 1223,170–178Google Scholar
  17. Cottin, P.; Vidalenc, P. L.; Ducastaing, A. Ca’+-dependent association between a Ca`’-activated neutral protease (CaANP) and its specific inhibitor. FEBSLett 1981 136,221–228Google Scholar
  18. Culler, R. D.; Parrish, F. C., Jr.; Smith, G. C.; Cross, H. R. Relationship of myofibril fragmentation index to certain chemical, physical and sensory characteristics of bovine longissimus dorsi muscle. J. Food Sci 1978, 43, 1177–1180Google Scholar
  19. Danowski, B. A.; Imanaka-Yoshida, K.; Sanger, J. M.; Sanger, J. W. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. J. Cell Biol 1992 118,1411–1420Google Scholar
  20. Davey, C. L.; Gilbert, K. V. Studies in meat tenderness. 7. Changes in the fine structure of meat during aging. J. Food Sci 1969 34,69–74Google Scholar
  21. Davies, P. J. A.; Wallach, D.; Willingham, M. C.; Pastan, I.; Ymaguchi, M., Robson, R.M. Filamin-actin interaction. Dissociation of binding from gelation by Ca“-activated proteolysis. J. Biol. Chem 1978 253,4036–4042Google Scholar
  22. Dayton, W. R.; Goll, D. E.; Stromer, M. H.; Robson, R. M.; Reville, W. J. Some properties of a Cat -activated protease that may be involved in myofibrillar protein turnover. In Proteases and Biological Control; E. Reich; D. B. Rifkin and E. Shaw, Eds.; Cold Spring Harbor Laboratory: Cold Spring Harbor, N.Y., 1975; p 551Google Scholar
  23. DeMartino, G. N.; Wachendorfer, R.; McGuire, M. J.; Croall, D. E. Proteolysis of the protein inhibitor of calcium-dependent proteases produces lower molecular weight fragments that retain inhibitory activity. Arch. Biochem. Biophys 1988 262,189–198Google Scholar
  24. Di Lisa, F.; De Tullio, R.; Salamino, F.; Barbato, R.; Melloni, E.; Siliprandi, N.; Schiaffino, S.; Pontremoli, S. Specific degradation of troponin T and I by mu-calpain and its modulation by substrate phosphorylation. Biochem. J 1995 308,57–61Google Scholar
  25. Edmunds, T.; Nagainis, P. A.; Sathe, S. K.; Thompson, V. F.; Goll, D. E. Comparison of the autolyzed and unautolyzed forms of mu-and m-calpain from bovine skeletal muscle. Biochim. Biophys. Acta 1991 1077,197–208Google Scholar
  26. Emori, Y.; Kawasaki, H.; Imajoh, S.; Imahori, K.; Suzuki, K. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proc. Natl. Acad. Sci. USA 1987 84,3590–3594Google Scholar
  27. Emori, Y.; Kawasaki, H.; Imajoh, S.; Minami, Y.; Suzuki, K. All four repeating domains of the endogenous inhibitor for calcium-dependent protease independently retain inhibitory activity. Expression of the cDNA fragments in Escherichia coli. J. Biol. Chem 1988 263,2364–2370Google Scholar
  28. Fritz, J. D.; Greaser, M. L. Changes in thin and nebulin in postmortem bovine muscle revealed by gel electrophoresis, western blotting, and immunofluorescence microscopy. J. Food Sci 199156,607–610Google Scholar
  29. Furst, D. O.; Osborn, M.; Nave, R.; Weber, K. The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J.Cell Biol 1988 106,1563–1572Google Scholar
  30. Goll, D. E.; Kleese, W. C.; Szpacenko, A. Skeletal muscle proteases and protein turnover. In Animal Growth Regulation; D. R. Campion; G. J. Hausman and R. J. Martin, Eds.; Plenum Publishing Corp.: New York, N.Y., 1989Google Scholar
  31. Goll, D. E.; Thompson, V. F.; Taylor, R. G.; Christiansen, J. A. Role of the calpain system in muscle growth. Biochimie 1992a 74,225–237Google Scholar
  32. Goll, D. E.; Thompson, V. F.; Taylor, R. G.; Zalewska, T. Is calpain activity regulated by membranes and autolysis or by calcium and calpastatin? Bioessays 1992b 14,549–556Google Scholar
  33. Gorlin, J. B.; Yamin, R.; Egan, S.; Stewart, M.; Stossel, T. P.; Kwiatkowski, D. J.; Hartwig, J. H. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): a molecular leaf spring. J. Cell Biol 1990 111,1089–1105Google Scholar
  34. Granzier, H. L.; Wang, K. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Biophys. J 199365,2141–2159Google Scholar
  35. Guttmann, R. R; Elce, J. S.; Bell, R. D.; Isbell, J. C.; Johnson, G. V. Oxidation inhibits substrate proteolysis by cal-pain I but not autolysis. J Biol. Chem.1997 272,2005–2012Google Scholar
  36. Ho, C. Y.; Stromer, M. H.; Robson, R. M. Effect of electrical stimulation on postmortem titin, nebulin, desmin, and troponin-T degradation and ultrastructural changes in bovine longissimus muscle. J. Anim. Sci 1996 74,1563–1575Google Scholar
  37. Ho, C. Y.; Stromer, M. H.; Robson, R. M. Identification of the 30 kDa polypeptide in post mortem skeletal muscle as a degradation product of troponin-T. Biochimie 1994 76,369–375Google Scholar
  38. Ho, C. Y.; Stromer, M. H.; Rouse, G.; Robson, R. M. Effects of electrical stimulation and postmortem storage on changes in titin, nebulin, desmin, troponin-T, and muscle ultrastructure in Bos indicus crossbred cattle. J. Anim. Sci 1997 75,366–376Google Scholar
  39. Huff-Lonergan, E.; Lonergan, S. M.; Kriese, L. A.; Wiegand, B. R. Postmortem degradation and calpastatin activity in top loin steaks from Brangus cattle. J. Anim. Sci 1997, (Suppl. 1)75–76Google Scholar
  40. Huff-Lonergan, E.; Mitsuhashi, T.; Beekman, D. D.; Parrish, F. C., Jr.; Olson, D. G.; Robson, R. M. Proteolysis of specific muscle structural proteins by mu-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. J. Anim. Sci 1996, 74, 993–1008Google Scholar
  41. Huff-Lonergan, E.; Parrish, F. C., Jr.; Robson, R. M. Effects of postmortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle. J. Anim. Sci 1995 73,1064–1073Google Scholar
  42. Hwan, S. F.; Sandman, E. Studies of desmin and a-actinin degradation in bovine semitendinosis muscle. J. Food Sci 1989 54,1426–1430Google Scholar
  43. Imajoh, S.; Kawasaki, H.; Suzuki, K. The amino-terminal hydrophobic region of the small subunit of calcium-activated neutral protease (CANP) is essential for its activation by phosphatidylinositol. J. Biochem. (Tokyo) 1986 99,1281–1284Google Scholar
  44. Inomata, M.; Saito, Y.; Kon, K.; Kawashima, S. Binding sites for calcium-activated neutral protease on erythrocyte membranes are not membrane phospholipids. Biochem. Biophys. Res. Commun 1990 171,625–632Google Scholar
  45. Ip, W.; Heuser, J. E.; Pang, Y. Y.; Hartzer, M. K.; Robson, R. M. Subunit structure of desmin and vimentin protofilaments and how they assemble into intermediate filaments. Ann. N. Y. Acad. Sci 1985 455,185–199Google Scholar
  46. lshima, R.; Tamura, A.; Akasaka, K.; Hamaguchi, K.; Makino, K.; Murachi, T.; Hatanaka, M.; Maki, M. Structure of the active 27-residue fragment of human calpastatin. FEBS Lettt 1991 294,64–66Google Scholar
  47. Itoh, Y.; Suzuki, T.; Kimura, S.; Ohashi, K.; Higuchi, H.; Sawada, H.; Shimizu, T.; Shibata, M.; Maruyama, K. Extensible and less-extensible domains of connectin filaments in stretched vertebrate skeletal muscle sarcomeres as detected by immunofluorescence and immunoelectron microscopy using monoclonal antibodies. J. Biochem. (Tokyo) 1988 104, 504–508Google Scholar
  48. Jin, J. R; Wang, K. Cloning, expression, and protein interaction of human nebulin fragments composed of varying numbers of sequence modules. J. Biol. Chem 1991 266,21215–21223Google Scholar
  49. Kapprell, H. R; Goll, D. E. Effect of Ca2+ on binding of the calpains to calpastatin. J. Biol. Chem 1989 264, 17888–17896Google Scholar
  50. Kawasaki, H.; Emori, Y.; lmajoh-Ohmi, S.; Minami, Y.; Suzuki, K. Identification and characterization of inhibitory sequences in four repeating domains of the endogenous inhibitor for calcium-dependent protease. J. Biochem. (Tokyo) 1989 106, 274–281Google Scholar
  51. Kawasaki, H.; Emori, Y.; Suzuki, K. Calpastatin has two distinct sites for interaction with calpain--effect of calpastatin fragments on the binding of calpain to membranes. Arch. Biochem. Biophys 1993 305,467–472Google Scholar
  52. Killefer, J.; Koohmaraie, M. Bovine skeletal muscle calpastatin: cloning, sequence analysis, and steady-state mRNA expression. J. Anim. Sci 1994 72, 606–614Google Scholar
  53. Kimura, S.; Matsuura, T.; Ohtsuka, S.; Nakauchi, Y.; Matsuno, A.; Maruyama, K. Characterization and localization of alpha-connectin (titin 1): an elastic protein isolated from rabbit skeletal muscle. J. Muscle Res. Cell Motil 1992 13, 39–47Google Scholar
  54. Koohmaraie, M. Muscle proteinases and meat aging. Meat Sci 1994 36, 93–103Google Scholar
  55. Koohmaraie, M. Role of neutral proteinases in postmortem muscle degradation and meat tenderness. Proc. Recip. Meat Conf 1992 45, 63–74Google Scholar
  56. Koohmaraie, M. The role of endogenous proteases and meat tenderness. Proc. Recip. Meat Conf 1988 41,89–100Google Scholar
  57. Koohmaraie, M.; Kennick, W. H.; Anglemier, A. F.; Elgasim, E. A.; Jones, T. K. Effect of postmortem stroage on cold-shortened bovine muscle: Analysis by SDS-polyacrylamide gel electrophoresis. J. Food Sci 1984a 49, 290–291Google Scholar
  58. Koohmaraie, M.; Kennick, W. H.; Elgasim, E. A.; Anglemier, A. F. Effect of postmortem storage on muscle protein degradation: Analysis by SDS-polyacrylamide gel electrophoresis. J. Food Sci 1984b 49,292–293Google Scholar
  59. Koohmaraie, M.; Killefer, J.; Bishop, B. D.;hackelford, S. D.; Wheeler, T. L.; Arbona, J. R. Calpastatin-based methods for predicting meat tenderness. In Expression, regulation and role of proteinases in muscle development and meat quality; A. Ouali; D. Demeyer and F. Smulders, Eds.; ECCEAMST (European Consortium for Continuing Education in Advanced Meat Science): Utrecht, The Netherlands, 1995a; pp 39–412Google Scholar
  60. Koohmaraie, M.; Shackelford, S. D.; Muggli-Cockett, N. E.; Stone, R. T. Effect of the beta-adrenergic agonist L644,969 on muscle growth, endogenous proteinase activities, and postmortem proteolysis in wether lambs. J. Anim. Sci 1991 69, 4823–4835Google Scholar
  61. Koohmaraie, M.; Shackelford, S. D.; Wheeler, T. L.; Lonergan, S. M.; Doumit, M. E. A muscle hypertrophy condition in lamb (callipyge): characterization of effects on muscle growth and meat quality traits. J. Anim. Sci 1995b,73,596–3607Google Scholar
  62. Kumamoto, T.; Kleese, W. C.; Cong, J. Y.; Goll, D. E.; Pierce, P. R.; Allen, R. E. Localization of the Ca(2+)-dependent proteinases and their inhibitor in normal, fasted, and denervated rat skeletal muscle. Anat. Rec 1992 32,60–77Google Scholar
  63. Kwak, K. B.; Chung, S. S.; Kim, O. M.; Kang, M. S.; Ha, D. B.; Chung, C. H. Increase in the level of m-calpain correlates with the elevated cleavage offilamin during myogenic differentiation of embryonic muscle cells. Biochim. Biophys. Acta 1993 175,243–249Google Scholar
  64. Labeit, S.; Gautel, M.; Lakey, A.; Trinick, J. Towards a molecular understanding of titin. Embo. J 1992 1,1711–1716Google Scholar
  65. Labeit, S.; Gibson, T.; Lakey, A.; Leonard, K.; Zeviani, M.; Knight, P.; Wardale, J.; Trinick, J. Evidence that nebulin is a protein-ruler in muscle thin filaments [published erratum appears in FEBS Lett. 1991 Dec 16;295(1–3):232]. FEBS Lett 1991 282, 313–316Google Scholar
  66. Labeit, S.; Kolmerer, B.; Linke, W. A. The giant protein titin. Emerging roles in physiology and pathophysiology Circ. Res 1997 80, 290–294Google Scholar
  67. Linke, W. A.; Popov, V. I.; Pollack, G. H. Passive and active tension in single cardiac myofibrils. Biophys. J 1994 67, 782–792Google Scholar
  68. Lonergan, S. M.; Huff-Lonergan, E.; Payne, D. M. Purification and partial characterization of a high molecular weight bovine skeletal muscle calpastatin. FASEB J 1997 11, A58Google Scholar
  69. Lonergan, S. M.; Huff-Lonergan, E.; Wiegand, B. R.; Kriese, L. A. The relationship of calpastatin activity to Warner-Bratzler shear force duging aging of top loin steaks from Brangus cattle. J. Anim. Sci 1997, (Suppl. 1)75, 12Google Scholar
  70. Lusby, M. L.; Ridpath, J. F.; Parrish, F. C., Jr.; Robson, R. M. Effect of postmortem storage on degradation of the recently discovered myofibrillar protein titin in bovine longissimus muscle. J. Food Sci 1983 48, 1789–1790,1795Google Scholar
  71. Ma, H.; Yang, H. Q.; Takano, E.; Lee, W. J.; Hatanaka, M.; Maki, M. Requirement of different subdomains of calpastatin for calpain inhibition and for binding to calmodulin-like domains. J. Biochem. (Tokyo) 1993 113, 591–599Google Scholar
  72. Maki, M.; Bagci, H.; Hamaguchi, K.; Ueda, M.; Murachi, T.; Hatanaka, M. Inhibition of calpain by a synthetic oli-gopeptide corresponding to an exon of the human calpastatin gene. J. Biol. Chem 1989 264,18866–18869Google Scholar
  73. Maki, M.; Hatanaka, H.; Takano, E.; Murachi, T. Structure-function relationship of calpastatins. In Intracellular calcium-dependent proteolysis; R. L. Mellgren and T. Murachi, Eds.; CRC Press: Boca Raton, Florida, 1990; pp 37–54Google Scholar
  74. Maki, M.; Ma, H.; Takano, E.; Adachi, Y.; Lee, W. J.; Hatanaka, M.; Murachi, T. Calpastatins: biochemical and molecular biological studies. Biomed. Biochim. Acta 1991 50, 509–516Google Scholar
  75. Maki, M.; Takano, E.; Mori, H.; Kannagi, R.; Murachi, T.; Hatanaka, M. Repetitive region of calpastatin is a functional unit of the proteinase inhibitor. Biochem. Biophys. Res. Commun 1987a 143,300–308Google Scholar
  76. Maki, M.; Takano, E.; Mori, H.; Sato, A.; Murachi, T.; Hatanaka, M. All four internally repetitive domains of pig calpastatin possess inhibitory activities against calpains I and II FEBSLett 1987b 223, 174–180Google Scholar
  77. Maki, M.; Takano, E.; Osawa, T.; Ooi, T.; Murachi, T.; Hatanaka, M. Analysis of structure-function relationship of pig calpastatin by expression of mutated cDNAs in Escherichia coli. J. Biol. Chem 1988 263,10254–61Google Scholar
  78. Maruyama, K. Connectin, an elastic protein of striated muscle. Biophys. Chem 1994 50,73–85Google Scholar
  79. Matsuura, T.; Kimura, S.; Ohtsuka, S.; Maruyama, K. Isolation and characterization of 1,200 kDa peptide of al pha-connectin. J. Biochem. (Tokyo) 1991 110, 474–478Google Scholar
  80. Mellgren, R. L. Calcium-dependent proteases: an enzyme system active at cellular membranes? FASEB J 1987 1, 110–115Google Scholar
  81. Mellgren, R. L.; Carr, T. C. The protein inhibitor of calcium-dependent proteases: purification from bovine heart and possible mechanisms of regulation. Arch. Biochem. Biophys 1983 225,779–786Google Scholar
  82. Mellgren, R. L.; Mericle, M. T.; Lane, R. D. Proteolysis of the calcium-dependent protease inhibitor by myocardial calcium-dependent protease. Arch. Biochem. Biophys 1986 246, 233–239Google Scholar
  83. Mellgren, R. L.; Nettey, M. S.; Mericle, M. T.; Renno, W.; Lane, R. D. An improved purification procedure for calpastatin, the inhibitor protein specific for the intracellular calcium-dependent proteinases, calpains. Prep. Biochem 1988 18, 183–197Google Scholar
  84. Melloni, E.; Sparatore, B.; Salamino, F.; Michetti, M.; Pontremoli, S. Cytosolic calcium dependent neutral proteinase of human erythrocytes: the role of calcium ions on the molecular and catalytic properties of the enzyme. Biochem. Biophys. Res. Commun 1982 107, 1053–1059Google Scholar
  85. Michetti, M.; Salamino, F.; Melloni, E.; Pontremoli, S. Reversible inactivation of calpain isoforms by nitric oxide. Biochem. Biophys. Res. Commun 1995 207, 1009–10014Google Scholar
  86. Murachi, T. Intracellular regulatory system involving calpain and calpastatin. Biochem. Int 1989 18, 263–294Google Scholar
  87. Nakamura, M.; Inomata, M.; Imajoh, S.; Suzuki, K.; Kawashima, S. Fragmentation of an endogenous inhibitor upon complex formation with high-and low-Ca2+-requiring forms of calcium-activated neutral proteases. Biochemistry 1989 28, 449–455Google Scholar
  88. Nave, R.; Furst, D. O.; Weber, K. Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? J. Cell Biol 1989 109,2177–2187Google Scholar
  89. Nishimura, T.; Goll, D. E. Binding of calpain fragments to calpastatin. J. Biol. Chem 1991 266,11842–11850Google Scholar
  90. O’Shea, J. M.; Robson, R. M.; Huiatt, T. W.; Hartzer, M. K.; Stromer, M. H. Purified desmin from adult mammalian skeletal muscle: a peptide mapping comparison with desmins from adult mammalian and avian smooth muscle. Biochem. Biophys. Res. Commun 1979 89, 972–980Google Scholar
  91. Otsuka, Y.; Goll, D. E. Purification of the Ca2+-dependent proteinase inhibitor from bovine cardiac muscle and its interaction with the millimolar Ca2+-dependent proteinase. J. Biol. Chem 1987 262, 5839–5851Google Scholar
  92. Pardo, J. V.; Siliciano, J. D.; Craig, S. W. A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma. Proc. Natl. Acad. Sci. USA 1983 80, 1008–1012Google Scholar
  93. Pearlstone, J. R.; Smillie, L. B. Binding of troponin-T fragments to several types of tropomyosin. Sensitivity to Ca2+ in the presence of troponin-C. J. Biol. Chem 1982 257,10587–10592Google Scholar
  94. Penny, I. F.; Dransfield, E. Relationship between toughness and troponin-T in conditioned beef. Meat Sci 1979 3, 135–141Google Scholar
  95. Pontremoli, S.; Melloni, E.; Sparatore, B.; Salamino, F.; Michetti, M.; Sacco, O.; Horecker, B. L. Role of phospholipids in the activation of the Ca2’-dependent neutral proteinase of human erythrocytes. Biochem. Biophys. Res. Commun 1985 129, 389–395Google Scholar
  96. Pontremoli, S.; Melloni, E.; Viotti, P. L.; Michetti, M.; Salamino, F.; Horecker, B. L. Identification of two calpastatin forms in rat skeletal muscle and their susceptibility to digestion by homologous calpains. Arch. Biochem. Biophys 1991 288, 646–652Google Scholar
  97. Pontremoli, S.; Viotti, P. L.; Michetti, M.; Salamino, F.; Sparatore, B.; Melloni, E. Modulation of inhibitory efficiency of rat skeletal muscle calpastatin by phosphorylation. Biochem. Biophys. Res. Commun 1992 187 751–759 Google Scholar
  98. Porter, G. A.; Dmytrenko, G. M.; Winkelmann, J. C.; Bloch, R. J. Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle. J. Cell Biol 1992 117,997–1005Google Scholar
  99. Price, M. G.; Caprette, D. R.; Gomer, R. H. Different temporal patterns of expression result in the same type, amount, and distribution of filamin (ABP) in cardiac and skeletal myofibrils. Cell Motil. Cytoskeleton 1994 27 248–261Google Scholar
  100. Pringle, T. D.; Calkins, C. R.; Koohmaraie, M.; Jones, S. J. Effects over time of feeding a beta-adrenergic agonist to wether lambs on animal performance, muscle growth, endogenous muscle proteinase activities, and meat tenderness. J. Anim. Sci 1993 71, 636–644Google Scholar
  101. Richardson, F. L.; Stromer, M. H.; Huiatt, T. W.; Robson, R. M. Immunoelectron and immunofluorescence localization of desmin in mature avian muscles. Eur. J. Cell Biol 1981 26, 91–101Google Scholar
  102. Robson, R. M. Intermediate filaments. Curr. Opinion Cell Biol 1989 1,36–43Google Scholar
  103. Robson, R. M. Myofibrillar and cytoskeletal structures and proteins in mature skeletal muscle cells. In Expression of tissue proteinases and regulation of protein degradation as related to meat quality; D. I. Demeyer, Smulders, F.J.M., Ed.; ECCEAMST (European Consortium for Continuing Education in Advanced Meat Science): Utrecht, The Netherlands, 1995; pp 267–288Google Scholar
  104. Robson, R. M.; Huff-Lonergan, E.; Parrich, F. C., Jr.; Ho, C.-Y.; Stromer, M. H.; Huiatt, T. W.; Bellin, R. M.; Semett, S. W. Proc. Recip. Meat Conf; American Meat Science Association 1997; 50 43–52Google Scholar
  105. Robson, R. M.; Huiatt, T. W.; Parrish, F. C., Jr. Proc. Recip. Meat Conf American Meat Science Association 1991; 44, 7–20Google Scholar
  106. Root, D. D.; Wang, K. Calmodulin-sensitive interaction of human nebulin fragments with actin and myosin. Biochemistry 1994 33, 12581–12591Google Scholar
  107. Salamino, F.; De Tullio, R.; Mengotti, P.; Melloni, E.; Pontremoli, S. Differential regulation of mu-and m-calpainin rat hearts perfused with Cat’ and cAMP. Biochem. Biophys. Res. Commun 1994 202, 1197–1203Google Scholar
  108. Schollmeyer, J. E. Possible role of calpain I and calpain Il in differentiating muscle. Exp. Cell Res 1986a 163, 413–422Google Scholar
  109. Schollmeyer, J. E. Role of Ca“ and Ca’-activated protease in myoblast fusion. Exp. Cell Res 1986b 162, 411–422Google Scholar
  110. Shackelford, S. D.; Koohmaraie, M.; Cundiff, L. V.; Gregory, K. E.; Rohrer, G. A.; Savell, J. W. Heritabilities and phenotypic and genetic correlations for bovine postrigor calpastatin activity, intramuscular fat content, Warner- Bratzler shear force, retail product yield, and growth rate. J. Anim. Sci 1994 72,857–863Google Scholar
  111. Shackelford, S. D.; Koohmaraie, M.; Miller, M. F.; Crouse, J. D.; Reagan, J. O. An evaluation of tenderness of the longissimus muscle of Angus by Hereford versus Brahman crossbred heifers. J. Anim. Sci 1991a 69, 171–177 Google Scholar
  112. Shackelford, S. D.; Koohmaraie, M.; Whipple, G.; Wheeler, T. L.; Miller, J. D.; Reagan, J. O. Predictors of tenderness: Development and verification. J. Food Sci 1991b 56, 11–30Google Scholar
  113. Shannon, J. D.; Goll, D. E. Properties of a protein that is purified from bovine skeletal muscle that inhibits the Ca2+-dependent proteinase. Prog. Clin. Biol. Res 1985 180, 257–259Google Scholar
  114. Shih, C. L.; Chen, M. J.; Linse, K.; Wang, K. Molecular contacts between nebulin and actin: cross-linking of nebulin modules to the N-terminus of actin. Biochemistry 1997 36, 1814–1825Google Scholar
  115. Straub, V.; Bittner, R. E.; Leger, J. J.; Voit, T. Direct visualization of the dystrophin network on skeletal muscle fiber membrane. J. Cell Biol 1992 119, 1183–1191Google Scholar
  116. Suzuki, K. The structure of calpains and the calpain gene. In Intracellular calcium-dependent proteolysis; R. L. Mellgren and T. Murachi, Eds.; CRC Press: Boca Raton, Floroda, 1990; pp 25–35Google Scholar
  117. Suzuki, K.; Saido, T. C.; Hirai, S. Modulation of cellular signals by calpain. Ann. N. Y. Acad. Sci 1992 674, 218–227Google Scholar
  118. Suzuki, K.; Tsuji, S.; Ishiura, S.; Kimura, Y.; Kubota, S.; Imahori, K. Autolysis of calcium-activated neutral protease of chicken skeletal muscle. J. Biochem. (Tokyo) 1981 90,1787–1793Google Scholar
  119. Swasdison, S.; Mayne, R. Location of the integrin complex and extracellular matrix molecules at the chicken myotendinous junction. Cell Tissue Res 1989 257, 537–543Google Scholar
  120. Takano, E.; Maki, M.; Hatanaka, M.; Mori, H.; Zenita, K.; Sakihama, T.; Kannagi, R.; Marti, T.; Titani, K.; Mu-rachi, T. Evidence for the repetitive domain structure of pig calpastatin as demonstrated by cloning of complementary DNA. FEBSLett 1986 208, 199–202Google Scholar
  121. Takano, E.; Maki, M.; Mori, H.; Hatanaka, M.; Marti, T.; Titani, K.; Kannagi, R.; Ooi, T.; Murachi, T. Pig heart calpastatin: identification of repetitive domain structures and anomalous behavior in polyacrylamide gel electrophoresis. Biochemistry 1988 27, 1964–1972Google Scholar
  122. Takano, E.; Yumoto, N.; Kannagi, R.; Murachi, T. Molecular diversity of calpastatin in mammalian organs. Biochem. Biophys. Res. Commun 1984 122, 912–917Google Scholar
  123. Tanabe, R.; Tatsumi, R.; Takahashi, K. Purification and characterization of the 1,200-kDa subfragment of connectin filaments produced by 0.1 mM calcium ions. J. Biochem. (Tokyo) 1994 115, 351–355Google Scholar
  124. Taylor, R. G.; Geesink, G. H.; Thompson, V. F.; Koohmaraie, M.; Goll, D. E. Is Z-disk degradation responsible for postmortem tenderization? J. Anim. Sci 1995, 73, 1351–1367Google Scholar
  125. Tidball, J. G.; O’Halloran, T.; Burridge, K. Talin at myotendinous junctions. J. Cell Biol 1986 103, 1465–1472Google Scholar
  126. Trinick, J. Titin and nebulin: protein rulers in muscle? Trends Biochem. Sci 1994 19, 405–409Google Scholar
  127. Trombitas, K.; Pollack, G. H. Elastic properties of the titin filament in the Z-line region of vertebrate striated muscle. J. Muscle Res. Cell Motil 1993 14, 416–422Google Scholar
  128. Trombitas, K.; Pollack, G. H.; Wright, J.; Wang, K. Elastic properties of titin filaments demonstrated using a “freeze-break” technique. Cell Motil. Cytoskeleton 1993 24, 274–283Google Scholar
  129. Uemori, T.; Shimojo, T.; Asada, K.; Asano, T.; Kimizuka, F.; Kato, I.; Maki, M.; Hatanaka, M.; Murachi, T.; Hanzawa, H.; et al. Characterization of a functional domain of human calpastatin. Biochem. Biophys. Res. Commun 1990 166, 1485–1493Google Scholar
  130. Volk, T.; Fessier, L. I.; Fessier, J. H. A role for integrin in the formation of sarcomeric cytoarchitecture. Cell 1990 63, 525–536Google Scholar
  131. Wang, K. Titin/connectin and nebulin: giant protein rulers of muscle structure and function. Adv. Biophys 1996, 33, 123–134Google Scholar
  132. Wang, K.; Ash, J. F.; Singer, S. J.; Gomer, R. H. Filamin, a new high-molecular-weight prtotein found in smooth muscle and non-muscle cells. Proc. Natl. Acad. Sci. USA 1975 72, 4483–4486Google Scholar
  133. Wang, K.; Knipfer, M.; Huang, Q. Q.; van Heerden, A.; Hsu, L. C.; Gutierrez, G.; Quian, X. L.; Stedman, H. Human skeletal muscle nebulin sequence encodes a blueprint for thin filament architecture. Sequence motifs and affinity profiles of tandem repeats and terminal SH3. J. Biol. Chem 1996 271, 4304–4314Google Scholar
  134. Wang, K.; Wright, J. Architecture of the sarcomere matrix of skeletal muscle: immunoelectron microscopic evidence that suggests a set of parallel inextensible nebulin filaments anchored at the Z line. J. Cell Biol 1988 107,2199–2212Google Scholar
  135. Wheeler, T. L.; Koohmaraie, M. Effects of the beta-adrenergic agonist L644,969 on muscle protein turnover, endogenous proteinase activities, and meat tenderness in steers. J. Anim. Sci 1992 70,3035–3043Google Scholar
  136. Whipple, G.; Koohmaraie, M.; Dikeman, M. E.; Crouse, J. D. Predicting beef-longissimus tenderness from various biochemical and histological muscle traits. J. Anim. Sci 1990a 68, 4193–4199Google Scholar
  137. Whipple, G.; Koohmaraie, M.; Dikeman, M. E.; Crouse, J. D.; Hunt, M. C.; Klemm, R. D. Evaluation of attributes that affect longissimus muscle tenderness in Bos taurus and Bos indicus cattle. J. Anim. Sci 1990b 68, 2716–2728Google Scholar
  138. Yang, H. Q.; Ma, H.; Takano, E.; Hatanaka, M.; Maki, M. Analysis of calcium-dependent interaction between amino-terminal conserved region of calpastatin functional domain and calmodulin-like domain of mu-calpain large subunit. J. Biol. Chem 1994 269, 18977–18984Google Scholar
  139. Yoshizawa, T.; Sorimachi, H.; Tomioka, S.; Ishiura, S.; Suzuki, K. Calpain dissociates into subunits in the presence of calcium ions. Biochem. Biophys. Res. Commun 1995a 208, 376–383Google Scholar
  140. Yoshizawa, T.; Sorimachi, H.; Tomioka, S.; Ishiura, S.; Suzuki, K. A. catalytic subunit of calpain possesses full proteolytic activity. FEBSLett 1995b 358, 101–103 Google Scholar
  141. Zot, A. S.; Potter, J. D. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Annu. Rev. Biophys. Biophys. Chem 1987 16, 535–559Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Elisabeth Huff-Lonergan
    • 1
  • Steven M. Lonergan
    • 1
  1. 1.Department of Animal ScienceIowa State UniversityAmesUSA

Personalised recommendations