Skip to main content

Orientational Disorder and Order in C60—Fullerite and in MC60—Alkali Metal Fullerides

  • Chapter
  • 218 Accesses

Abstract

We start with a review of the formalism of symmetry adapted functions (SAF) for the description of orientation dependent properties of solids. For nonlinear molecules SAF’s are rotator functions which take into account the symmetry of the molecule and the symmetry of the crystalline site. We apply these concepts to the description of the phase transition from the orientationally disordered phase (crystal structure \(Fm\bar 3m\)) to the ordered phase (crystal structure \(Pa\bar 3\)) in solid C60. Due to the unusually high symmetry (I h ) of the molecule, the first order phase transition is characterized by the simultaneous condensation of a multitude of order parameter components belonging to the irreducible representation \(X_5^ + (\hat \tau ^{(9)} )\) at the X point of the Brillouin zone. Theoretical results are compared with recent neutron and X-ray diffraction experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Parsonage, and L. A. K. Stavely. “Disorder in Crystals,” Clarendon, Oxford (1978).

    Google Scholar 

  2. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347:354 (1990).

    Article  ADS  Google Scholar 

  3. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318:162 (1985).

    Article  ADS  Google Scholar 

  4. R. Sachidanandam and A. B. Harris, Phys. Rev. Lett. 67:1467 (1991); P. A. Heiney. J. E. Fischer, A. R. McGhie, W. J. Romanov, A. M. Denenstein, J. P. McCauley Jr., A. B. Smith III, and D. E. Cox, Phys. Rev. Lett. 67:1468 (1991).

    Article  ADS  Google Scholar 

  5. W. I. F. David, R. M. Ibberson, J. C. Matthewman, K. Prassides, T. J. S. Dennis, J. P. Hare, H. W. Kroto, and D. R. M. Walton, Nature 353:147 (1991).

    Article  ADS  Google Scholar 

  6. A. B. Harris, and R. Sachidanandam, Phys. Rev. B 46:4944 (1992).

    ADS  Google Scholar 

  7. “Physics and Chemistry of the Fullerenes,” Edited by K. Prassides, NATO ASI Series C: Mathematical and Physical Sciences - vol.443, Kluwer, Dordrecht (1994).

    Google Scholar 

  8. H. Kuzmany, J. Fink, M. Mehring, and S. Roth (eds.) “Fullerenes and Fullerene Nanostructures,” World Scientific, Singapore (1996).

    Google Scholar 

  9. P. Launois, S. Ravy, and R. Moret, Phys. Rev. B 52:5414 (1995).

    ADS  Google Scholar 

  10. O. Blaschko, R. Glas, Ch. Maier, M. Haluska, and H. Kuzmany, Phys. Rev. B 48:14638 (1993).

    ADS  Google Scholar 

  11. L. Pintschovius, S. L. Chaplot, G. Roth, and G. Heger, Phys.Rev.Lett. 75:2843 (1995).

    Article  ADS  Google Scholar 

  12. J. D. Axe, S. C. Moss, and D. A. Neumann, xxxxin: “Solid State Physics,” vol.48, p.149, H. Ehrenreich, F. Spaepen (eds.), Academic Press and Erratum, New York, P.Wochner, private communication (1994).

    Google Scholar 

  13. J. Winter, and H. Kuzmany, Solid State Commun. 84:935 (1992).

    Article  ADS  Google Scholar 

  14. D. M. Poirier, T. R. Ohno, G. H. Kroll, P. J. Benning, F. Stepniak, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley, Phys. Rev. B 47:9870 (1993).

    ADS  Google Scholar 

  15. A. Janossy, O. Chauvet, S. Pekker, J. R. Cooper, and L. Forro, Phys. Rev.,Lett 71:1091 (1993).

    Article  ADS  Google Scholar 

  16. D. A. Bochvar, E. G. Gal’perin, Dokl. Akad. Nauk SSSR Chem. 209:N.3, 610 (1973).

    Google Scholar 

  17. R. C. Haddon, L. E. Brus, and K. Raghavachari, Chem. Phys. Lett,. 125:459 (1986); M. Braga, S. Larsson, A. Rosen, and A. Volosov, Astron. Astrophys. 245:232 (1991).

    Article  ADS  Google Scholar 

  18. S. Pekker, L. Forro, L. Mihaly, and A. Janossy, Solid State Commun. 90:349 (1994).

    Article  ADS  Google Scholar 

  19. P.W. Stephens, G. Bortel, G. Faigel, M. Tegze, A. Janossy, S. Pekker, G. Oszlanyi and L. Forro, Nature (London) 370:636 (1994).

    Article  ADS  Google Scholar 

  20. S. Pekker, A. Janossy, L. Mihaly, O. Chauvet, M. Carrard, and L. Forro, Science 265:1077 (1994).

    Article  ADS  Google Scholar 

  21. G. Oszlanyi, G. Bortel, G. Faigel, L. Granasy, G. M. Bendele, P. W. Stephens, and L. Forro, Phys. Rev. B 54:11849 (1996).

    ADS  Google Scholar 

  22. G. Oszlanyi, G. Bortel, G. Faigel, M. Tegze, L. Granasy, S. Pekker, P. W. Stephens, G. Bendele, R. Dinnebier, G. Mihaly, A. Janossy, O. Chauvet, and L. Forro, Phys. Rev. B 51:12228 (1995); Q. Zhu, D. E. Cox, and J. E. Fischer, Phys. Rev. B 51:3966 (1995).

    ADS  Google Scholar 

  23. C. J. Bradley, and A. P. Cracknell. “The Mathematical Theory of Symmetry in Solids,” Clarendon, Oxford (1972).

    MATH  Google Scholar 

  24. H. Bethe, Ann.Physik 3:133 (1929); F. C. Von der Lage, and H. A. Bethe, Phys. Rev. 71:612 (1947).

    Article  ADS  MATH  Google Scholar 

  25. A. F. Devonshire, Proc. Roy. Soc. London A153:601 (1936).

    ADS  Google Scholar 

  26. M. Tinkham. “Group Theory and Quantum Mechanics,” McGraw-Hill, New York (1964).

    MATH  Google Scholar 

  27. H. M. James, and T. A. Keenan, J. Chem. Phys. 31:12 (1959).

    Article  ADS  Google Scholar 

  28. W. Press, and A. Willer, Acta Crystallogr. A29:252 (1973a).

    ADS  Google Scholar 

  29. M. Yvinec, and R. M. Pick, J. Phys. (Paris) 41:1045 (1980).

    Article  Google Scholar 

  30. K. H. Michel, and K. Parlinski, Phys. Rev. B 31:1823 (1985).

    ADS  Google Scholar 

  31. K. H. Michel, J. R. D. Copley, and D. A. Neumann, Phys. Rev. Lett. 68:2929 (1992); K. H. Michel, Z. Plays. B Cond. Matter 88:71 (1992).

    Article  ADS  Google Scholar 

  32. J. R. D. Copley, and K. H. Michel, J. Phys. Condens. Matter 5:4353 (1993).

    Article  ADS  Google Scholar 

  33. M. Sprik, A. Cheng, and M. L. Klein, J. Phys. Chem. 96:2027 (1992).

    Article  Google Scholar 

  34. Q. -M. Zhang, J. -Y. Yi, and J. Bernholc, Phys. Rev. Lett. 66: 2633 (1991).

    Article  ADS  Google Scholar 

  35. K. H. Michel, J.Chem. Phys. 97:5155 (1992).

    Article  ADS  Google Scholar 

  36. N. V. Cohan, Proc. Carob. Phil. Soc. Math. Phys. Sci. 54:28 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  37. S. Savin, A. B. Harris, and T. Yildirim, Phys. Rev. B 55:14182 (1997).

    ADS  Google Scholar 

  38. D. Lamoen, and K. H. Michel, J. Chem. Phys. 101:1435 (1994).

    Article  ADS  Google Scholar 

  39. T. Yildirim, A. B. Harris, S. C. Erwin, and M. R. Pederson, Phys. Rev. B 48:1888 (1993).

    ADS  Google Scholar 

  40. K. H. Michel, and J. R. D. Copley, Z. Phys. B Cond. Matter 103:369 (1997).

    Article  Google Scholar 

  41. D. A. Neumann, J. R. D. Copley, R. L. Cappelletti, W. A. Kamitakahara, R. M. Lindstrom, K. M. Creegan, D. M. Cox, W. J. Romanow, N. Coustel, J. P. McCauley Jr., N. C. Maliszewskyj, J. E. Fischer, and A. B. Smith III, Phys. Rev. Lett. 67:3808 (1991).

    Article  ADS  Google Scholar 

  42. H. T. Stokes, and D. M. Hatch. “Isotropy Subgroups of the Crystallographic Space Groups,” World Scientific, Singapore (1988).

    MATH  Google Scholar 

  43. R. Heid, Phys. Rev. B 47:15912 (1993).

    ADS  Google Scholar 

  44. D. Lamoen, and K. H. Michel, Z. Phys. B 92:323 (1993).

    Article  ADS  Google Scholar 

  45. P. C. Chow, X. Jiang, G. Reiter, P. Wochner, S. C. Moss, J. D. Axe, J. C. Hanson, R. K. McMullen, R. L. Meng, and C. W. Chu, Phys. Rev. Lett. 69:2943 (1992); H. -B. Biirgi, R. Restori, and D. Schwarzenbach, Acta Crystallogr. B 49:832 (1993).

    Article  ADS  Google Scholar 

  46. W. I. F. David, R. M. Ibberson, and T. Matsuo, Proc. Roy. Soc. London.Ser. A 442:129 (1993).

    Article  ADS  Google Scholar 

  47. P. Launois, S. Ravy, and R. Moret, Phys. Rev. B 55:2651 (1997).

    ADS  Google Scholar 

  48. S. Ravy, P. Launois, and R. Moret, Phys. Rev. B 53:10532 (1996).

    ADS  Google Scholar 

  49. J. P. Lu, X. -P. Li, and R. M. Martin, Phys. Rev. Lett. 68:1551 (1992).

    Article  ADS  Google Scholar 

  50. P. Schiebel, K. Wulf, W. Prandl, G. Heger, R. Papoular, and W. Paulus, Acta Crystallogr. A 52:176 (1996).

    Google Scholar 

  51. H. -B. Biirgi, E. Blanc, D. Schwarzenbach, S. Lin, Y. -J. Lu, M. M. Kappes, and J. A. Ibers, Angew. Chem. Int. Ed. Engl. 31:640 (1992).

    Article  Google Scholar 

  52. W. I. F. David, R. M. Ibberson, T. J. S. Dennis, J. P. Hare, and K. Prassides, Europhys. Lett. 18:219 (1992).

    Article  ADS  Google Scholar 

  53. P. A. Heiney, G. B. M. Vaughan, J. E. Fischer, N. Coustel, D. E. Cox, J. R. D. Copley, D. A. Neumann, W. A. Kamitakahara, K. M. Creegan, D. M. Cox, J. P. McCauley Jr., and A. B. Smith III, Phys. Rev. B 45:4544 (1992); J. R. D. Copley, W. I. F. David, and D. A. Neumann, Neutron News 4:21 (1993).

    ADS  Google Scholar 

  54. J. R. D. Copley, and K. H. Michel, to be published. A first account has been given by these authors in the Proceedings of the International Conference on Neutron Scattering, Toronto 1997, to be published in Physica B (1998).

    Google Scholar 

  55. R. Moret, P. A. Albony, V. Agafonov, R. Ceolin, D. André, A. Dworkin, H. Swarc, C. Fabré, A. Rassat, A. Zahab, and P. Bernier, J. Phys. I France 2:511 (1992).

    Google Scholar 

  56. R. Moret, P. Launois, and S. Ravy, Fullerene Science and Technology 4:1298 (1996).

    Article  Google Scholar 

  57. K. Sakaue, N. Toyoda, H. Kasatani, H. Terauchi, T. Arai, Y. Murakami, and H. Suematsu, J. Phys. Soc. Japan, 63:1237 (1994).

    Article  ADS  Google Scholar 

  58. Q. Zhu, O. Zhou, J. E. Fischer, A. R. McGhie, W. J. Romanow, R. M. Strongin, M. A. Cichy, and A. B. Smith III, Phys. Rev. B 47:13948 (1993).

    ADS  Google Scholar 

  59. O. Chauvet, G. Oszlanyi, L. Forro, P. W. Stephens, M. Tegze, G. Faigel, and A. Janossy, Phys. Rev. Lett. 72:2721 (1994).

    Article  ADS  Google Scholar 

  60. B. Renker, H. Schober, and R. Heid, Appl. Phys.A 64:271 (1997).

    ADS  Google Scholar 

  61. B. Henker, F. Gompf, R. Held, P. Adelmann, A. Heiming, W. Reichardt, G. Roth, H. Schober, and H. Rietschel, Z. Phys.B 90:325 (1993).

    ADS  Google Scholar 

  62. R. Tycko, G. Dabbagh, D. W. Murphy, Q. Zhu, and J. E. Fischer, Phys. Rev. B 48:9097 (1993).

    ADS  Google Scholar 

  63. A. V. Nikolaev, K. Prassides, and K. H. Michel, J. Cheng. Phys. 108:4912 (1998).

    Article  ADS  Google Scholar 

  64. P. W. Atkins, and R. S. Friedman. “Molecular Quantum Mechanics,” 3rd edition, Oxford University Press, Oxford (1997).

    Google Scholar 

  65. V. L. Aksenov, V. S. Shakhmatov, and Y. A. Osipyan, JETP Lett. 62:428 (1995); V. L. Aksenov, V. S. Shakhmatov, and Y. A. Osipyan, JETP Lett. 64:120 (1996).

    ADS  Google Scholar 

  66. L. D. Landau, Phys. Z. Sowjetunion 11:26545 (1937); L. D. Landau and E. M. Lifshitz. “Statistical Physics,” Vol.5 Pergamon, Bristol (1995).

    Google Scholar 

  67. P. Zielinski, and K. Parlinski, J. Phys. C 17:3301 (1984).

    Google Scholar 

  68. M. Kosaka, K. Tanigaki, T. Tanaka, T. Atake, A. Lappas, and K. Prassides, Phys. Rev. B 51:12018 (1995).

    ADS  Google Scholar 

  69. A. Lappas, M. Kosaka, K. Tanigaki, and K. Prassides, J. Am. Chem. Soc. 117:7560 (1995).

    Article  Google Scholar 

  70. L. Granasy, S. Pekker, and L. Forro, Phys. Rev. B 53:5059 (1996).

    ADS  Google Scholar 

  71. T. Matsuo, H. Suga, W. I. F. David, R. M. Ibberson, P. Bernier, A. Zahab, C. Fahre, A. Rassat, and A. Dworkin, Solid State Commun. 83:711 (1992); G. Pitsi, J. Caerels, and J. Thoen, Phys. Rev. B 55:915 (1997).

    Article  ADS  Google Scholar 

  72. K. Prassides, K. Vavekis, K. Kordatos, K. Tanigaki, G. M. Bendele, and P. W. Stephens, J. Am. Chem. Soc. 119:834 (1997); G. M. Bendele, P. W. Stephens, K. Prassides, K. Vavekis, K. Kordatos, and K. Tanigaki, Phys. Rev. Lett. 80:736 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nikolaev, A.V., Michel, K.H., Copley, J.R.D. (1999). Orientational Disorder and Order in C60—Fullerite and in MC60—Alkali Metal Fullerides. In: Shopova, D.V., Uzunov, D.I. (eds) Correlations, Coherence, and Order. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4727-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4727-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7142-7

  • Online ISBN: 978-1-4615-4727-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics