Mechanisms of Copper Chaperone Proteins

  • Robert A. Pufahl
  • Thomas V. O’Halloran


Little is known about the chemistry and biology involved in getting a metal such as copper (Cu) to the right place in a cell. Recently, several members of an emerging class of proteins have been proposed to play a role in guiding and protecting metal ions inside cells, and ultimately delivering these cofactors to specific targets. The copper escort function for one of the yeast proteins, Atxl, has been established (Pufahl et al., 1997). A similar function has been proposed for another yeast protein, Lys7, which shares some sequence similarity to Atxl, but is thought to deliver copper to another target within the cell (Culotta et al., 1997). This review summarizes recent insights into the biological chemistry of these two prototypical metal ion chaperone proteins.


Chaperone Protein Copper Binding Menkes Disease Copper Chaperone LYS7 Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Askwith, C., and Kaplan, J. (1998). Iron and copper transport in yeast and its relevance to human disease. TIBS 23, 135–138.PubMedGoogle Scholar
  2. Beers, J., Glerum, D. M., and Tzagoloff, A. (1997). Purification, characterization, and localization of yeast Coxl7p, a mitochondrial copper shuttle. J. Biol. Chem. 272, 33191–33196.PubMedCrossRefGoogle Scholar
  3. Bull, P. C., and Cox, D. W. (1994). Wilson disease and Menkes disease: new handles on heavy-metal transport. TIG 10, 246–252.PubMedCrossRefGoogle Scholar
  4. Chen, L.-Y., Chen, M.-Y, Leu, W.-M., Tsai, T.-Y., and Lee, Y.-H. W. (1993). Mutational study of Streptomycestyrosinase fra/w-activator MelC 1. J. Biol. Chem. 268, 18710–18716.PubMedGoogle Scholar
  5. Cox, D. W. (1995). Genes of the copper pathway. Am. J. Hum. Genet. 56, 828–834.PubMedGoogle Scholar
  6. Culotta, V. C., Klomp, L.W.J., Strain, J., Casereno, R. L. B., Krems, B., and Gitlin, J. D. (1997). The copper chaperone for Superoxide dismutase. J. Biol. Chem. 272, 23469–23472.PubMedCrossRefGoogle Scholar
  7. Dancis, A., Haile, D., Yuan, D.S., and Klausner, R.D. (1994). The Saccharomyces cerevisiaecopper transport protein (Ctrlp). J. Biol. Chem. 269, 25660–25667.PubMedGoogle Scholar
  8. DiDonato, M., Narindrasorasak, S., Forbes, J.R.., Cox, D. W., and Sarkar, B. (1997). Expression, purification, and metal binding properties of the N-terminal domain from the Wilson disease putative copper-transporting ATPase (ATP7B). J. Biol. Chem. 272, 33279–33282.CrossRefGoogle Scholar
  9. Fu, C., Olson, J. W., and Maier, R. J. (1995). HypB protein of Bradyrhizobium japonicumis a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer. Proc. Natl. Acad. Sci. U.S.A. 92, 2333–2337.PubMedCrossRefGoogle Scholar
  10. Gamonet, F., and Lauquin, G. J.-M. (1998). The Saccharomyces cerevisiae LYS7gene is involved in oxidative stress protection. Eur. J. Biochem. 251, 716–723.PubMedCrossRefGoogle Scholar
  11. Georgatsou, E., Mavrogiannis, L.A., Fragiadakis, G. S., and Alexandraki, D. (1997). The yeast Frelp/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Maclp activator. J. Biol. Chem. 272, 13786–13792.PubMedCrossRefGoogle Scholar
  12. Gitschier, J., Moffat, B., Reilly, D., Wood, W. I., and Fairbrother, W. J. (1998). Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat. Struct. Biol. 5, 47–54.PubMedCrossRefGoogle Scholar
  13. Glerum, D. M., Shtanko, A., and Tzagoloff, A. (1996). Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J. Biol. Chem. 271, 14504–14509.PubMedCrossRefGoogle Scholar
  14. Gralla, E.B., and Kosman, D. J. (1992). Molecular genetics of Superoxide dismutases in yeasts and related fungi. Adv. Genet. 30, 251–319.PubMedCrossRefGoogle Scholar
  15. Hassett, R., and Kosman, D. J. (1995). Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J. Biol. Chem. 270, 128–134.PubMedCrossRefGoogle Scholar
  16. Hausinger, R. P. (1997). Metallocenter assembly in nickel-containing enzymes. JBIC 2, 279–286.CrossRefGoogle Scholar
  17. Hausinger, R. P., Eichhorn, G. L., and Marzilli, L. G. (1996). Mechanisms of metallocenter assembly. In: Eichhorn, G. L., Marzilli, L. G. (Eds.) “Advances in Inorganic Biochemistry.” VCH, New York.Google Scholar
  18. Hobman, J.L., and Brown, N. L. (1997). Bacterial mercury-resistance genes. Metals Ions in Biological Systems. 34, 527–568.Google Scholar
  19. Homer, M. J., Dean, D. R., and Roberts, G. P. (1995). Characterization of the y protein and its involvement in the metallocluster assembly and maturation of dinitrogenase from Azotobacter vinelandii. J. Biol. Chem. 270, 24745–24752.PubMedCrossRefGoogle Scholar
  20. Horecka, J., Kinsey, P. T., and Sprague, G. F. (1995). Cloning and characterization of the Saccharomyces cerevisiae LYS7gene: evidence for function outside of lysine biosynthesis. Gene 162, 87–92.PubMedCrossRefGoogle Scholar
  21. Huffman, D. L., Utschig, L. M., and O’Halloran, T. V. (1997). Mercury-responsive gene regulation and mercury-199 as a probe of protein structure. In: Sigel, A., Sigel, H. (Eds.) “Mercury and Its Effects on Environment and Biology.” Marcel Dekker, Inc., New York, pp. 503–525.Google Scholar
  22. Iida, M., Tereda, K., Sambongi, Y, Wakabayashi, T., Miura, N., Koyama, K., Futai, M., and Sugiyama, T. (1998). Analysis of functional domains of Wilson-disease protein (ATP7B) in Saccharomyces cerevisiae. FEBS Lett. 428, 281–285.PubMedCrossRefGoogle Scholar
  23. Klomp, L.W.J., Lin, S.-J., Yuan, D.S., Klausner, R.D., Culotta, V. C., and Gitlin, J. D. (1997). Identification and functional expression of HAH 1, a novel human gene involved in copper homeostasis. J. Biol. Chem. 272, 9221–9226.PubMedCrossRefGoogle Scholar
  24. Kosman, D. J., Hassett, R., Yuan, D.S., and McCracken, J. (1998). Spectroscopic characterization of the Cu(II) sites in the Fet3 protein, the multinuclear copper oxidase from yeast required for high-affinity iron uptake. J. Am. Chem. Soc. 120, 4037–4038.CrossRefGoogle Scholar
  25. Lin, S.-J., Pufahl, R. A., Dancis, A., O’Halloran, T. V., and Culotta, V. C. (1997). A role for the Saccharomyces cerevisiae ATX 1gene in copper trafficking and iron transport. J. Biol. Chem. 272, 9215–9220.PubMedCrossRefGoogle Scholar
  26. Liu, X. F., Elashvili, I., Gralla, E.B., Valentine, J.S., Lapinskas, P., and Culotta, V. C. (1992). Yeast lacking superoxide dismutase. Isolation of genetic suppressors. J. Biol. Chem. 267, 18298–18302.Google Scholar
  27. Lutsenko, S., Petrukhin, K., Cooper, M. J., Gilliam, C. T., and Kaplan, J. H. (1997). N-terminal domains of human copper-transporting adenosine triphosphatases (the Wilson’ and Menkes disease proteins) bind copper selectively in vivo and in vitro with stoichiometry of one copper per metal-binding repeat. J. Biol. Chem. 272, 18939–18944.PubMedCrossRefGoogle Scholar
  28. Payne, A.S., and Gitlin, J. D. (1998). Functional expression of the Menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J. Biol. Chem. 273, 3765–3770.PubMedCrossRefGoogle Scholar
  29. Pufahl, R. A., Singer, C. P., Peariso, K. L., Lin, S.-J., Schimdt, P., Culotta, V. C., Penner-Hahn, J. E., and O’Halloran, T. V. (1997). Metal ion chaperone function of the soluble Cu(I) receptor Atxl. Science 278, 853–856.PubMedCrossRefGoogle Scholar
  30. Srinivasan, C., Posewitz, M. C., George, G. N., and Winge, D. R. (1998). Characterization of the copper chaperone Coxl7 of Saccharomyces cerevisiae. Biochemistry 37, 7572–7577.PubMedCrossRefGoogle Scholar
  31. Stearman, R., Yuan, D.S., Yamaguchi-Iwai, Y., Klausner, R.D., and Dancis, A. (1996). A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552–1557.PubMedCrossRefGoogle Scholar
  32. Steele, R. A., and Opella, S.J. (1997). Structures of the reduced and mercury-bound forms of MerP, the periplasmic protein from the bacterial mercury detoxification system. Biochemistry 36, 6885–6895.PubMedCrossRefGoogle Scholar
  33. Summers, A. O. (1986). Organization, expression, and evolution of genes for mercury resistance. Ann. Rev. Microbiol. 40, 607–634.CrossRefGoogle Scholar
  34. Utschig, L. M., Bryson, J. W., and O’Halloran, T. V. (1995). Mercury-199 NMR of the metal receptor site in MerR and its protein-DNA complex. Science 268, 380–385.PubMedCrossRefGoogle Scholar
  35. Valentine, J.S., and Gralla, E.B. (1997). Delivering copper inside yeast and human cells. Science 278, 817–818.PubMedCrossRefGoogle Scholar
  36. Yuan, D.S., Stearman, R., Dancis, A., Dunn, T., Beeler, T., and Klausner, R.D. (1995). The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc. Natl. Acad. Sci. U.S.A. 92, 2632–2636.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Robert A. Pufahl
    • 1
  • Thomas V. O’Halloran
    • 2
  1. 1.Department of ChemistryEvanstonUSA
  2. 2.Department of Biochemistry, Molecular, Biology and Cell BiologyNorthwestern UniversityEvanstonUSA

Personalised recommendations