Superfluidity and Feshbach Resonances in BEC

  • Robin Côté
  • Eddy Timmermans
  • Paolo Tommasini
Part of the Physics of Atoms and Molecules book series (PAMO)


The experimental realisation of Bose-Einstein condensation (BEC) in trapped dilute alkali gases in 1995 has generated an exciting new field in physics. Since the initial experiments on 87Rb at JILA, 1 7Li at Rice University,2 and 23Na at MIT,3 many new groups have joined the BEC club, mostly in 87Rb and 23Na systems, although, condensation was recently observed in a spin-polarized hydrogen gas.4


Impurity Atom Evaporative Cool Magnetic Trap Feshbach Resonance Alkali Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor, Science 269: 198 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    C.C. Bradley, C.A. Sackett, J.J. Tollett, and R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Phys. Rev. Lett. 75: 1687 (1995); C.C. Bradley, C.A. Sackett, and R.G. Hulet, Bose-Einstein condensation of lithium: observation of limited condensate number, Phys. Rev. Lett. 78: 985 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett. 75: 3969(1995).Google Scholar
  4. 4.
    D.G. Fried, T.C. Killian, L. Willman, D. Landhuis, S.C. Moss, D. Kleppner, and T.J. Greytak, Bose-Einstein condensation in atomic hydrogen, Los Alamos e-print archive, Report No. physics/9809017 (submitted to Phys. Rev. Lett.); T.C. Killian, D.G. Fried, L. Willman, D. Landhuis, S.C. Moss, T.J. Greytak, and D. Kleppner, Cold collision frequency shift of the 1S-2S transition in hydrogen, Los Alamos e-print archive, Report No. physics/9809016 (submitted to Phys. Rev. Lett.).Google Scholar
  5. 5.
    A.L. Fetter and J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill Publishing Company, New York (1971).Google Scholar
  6. 6.
    T.J. Greytak, Prospects for Bose-Einstein condensation in magnetically trapped atomic hydrogen, in: Bose-Einstein Condensation, p. 131, A. Griffin, D.W. Snoke, and S. Stringari, ed., Cambridge University Press, Cambridge (1995); I.F. Silvera and J.T.M Walraven, Spin-polarized atomic hydrogen, in: Progress in Low Temperature Physics, Vol. 10, p. 139, D.F. Brewer, ed., Elsevier, Amsterdam (1986).Google Scholar
  7. 7.
    M.J. Jamieson and A. Dalgarno, How a change in the interaction potentials affects the s-wave scattering length, J. Phys. B 31: L219 (1998).ADSGoogle Scholar
  8. 8.
    S. Chu, The manipulation of neutral atoms, Rev. Mod. Phys. 70: 685(1998).ADSCrossRefGoogle Scholar
  9. 9.
    W.C. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70: 721 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    C.N. Cohen-Tannoudji, Manipulating atoms with photons, Rev. Mod. Phys. 70: 707(1998).ADSCrossRefGoogle Scholar
  11. 11.
    H.F. Hess, G. Kochanski, J.M. Doyle, N. Masuhara, D. Kleppner, and T.J. Greytak, Magnetic trapping of spin-polarized atomic hydrogen, Phys. Rev. Lett. 59: 672 (1987); R. van Roijen, J.J. Berhout, S. Jaakkola, and J.T.M. Walraven, Experiments with atomic hydrogen in a magetic trapping field, Phys. Rev. Lett. 61: 931 (1988); N. Masuhara, J.M. Doyle, J.C. Sandberg, D. Kleppner, T.J. Greytak, H.F. Hess, and G.P. Kochanski, Evaporative cooling of spin-polarized atomic hydrogen, Phys. Rev. Lett. 61: 935 (1988); J.M. Doyle, J.C. Sandberg, I.A. Yu, C.L. Cesar, D. Kleppner, and T.J. Greytak, Hydrogen in the submillikelvin regime: sticking probability on superfluid 4He, Phys. Rev. Lett. 67: 603 (1991); for a review, see also; W. Ketterle and N.J. van Druten, Evaporative cooling of trapped atoms, in: Avances in Atomic. Molecular, and Optical Physics, Vol. 37, p. 181, B. Bederson and H. Walther, ed., Academic Press, San Diego (1996).ADSCrossRefGoogle Scholar
  12. 12.
    V. Bagnato, D.E. Pritchard, and D. Kleppner, Bose-Einstein condensation in an external potential, Phys. Rev. A 35: 4354 (1987).ADSCrossRefGoogle Scholar
  13. 13.
    E.R.I. Abraham, W.I. McAlexander, J.M. Gerton, R.G. Hulet, R. Côté, and A. Dalgarno, Triplet s-wave resonance in 6Li collisions and scattering lengths of 6Li and 7Li, Phys. Rev. A 55: R3299 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    C.A. Sackett, H.T.C. Stoof, and R.G. Hulet, Growth and collapse of a Bose-Einstein condensate with attractive interactions, Phys. Rev. Lett. 80: 2031 (1998); C.A. Sackett, C.C. Bradley, M. Welling, and R.G. Hulet, Bose-Einstein condensation of lithium, Appl. Phys. B 65: 433 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    A.S. Parkins and D.F. Walls, The physics of trapped dilute-gas Bose-Einstein condensates, Physics Report 303: 1 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    R. Côté, A. Dalgarno, Y. Sun, and R.G. Hulet, Photoabsorption by ultracold atoms and the scattering length, Phys. Rev. Lett. 74: 3581 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    K. Huang, Statistical Mechanics, John Wiley, New York (1987).zbMATHGoogle Scholar
  18. 18.
    Some of these restrictions are lifted in an optical trap, see; D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Optical confinement of a Bose-Einstein condensate, Phys. Rev. Lett. 80: 2027(1998).ADSCrossRefGoogle Scholar
  19. 19.
    E. Timmermans and R. Côté, Superfluidity in sympathetic cooling with atomic Bose-Einstein condensates, Phys. Rev. Lett. 80: 3419 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    J.M.V.A. Koelman, H.T.C. Stoof, B.J. Verhaar, and J.T.M. Walraven, Spin-polarized deuterium in magnetic traps, Phys. Rev. Lett. 59, 676 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    A. Dalgarno and M.R.H. Rudge, Spin-change cross-sections for collisions between alkali atoms, Proc. Roy. Soc, A, 286:519 (1965).Google Scholar
  22. 22.
    B.J. Verhaar, J.M.V.A. Koelman, H.T.C. Stoof, O.J. Luiten, and S.B. Crampton, Hyperfine contribution to spin-exchange frequency shifts in the hydrogen maser, Phys. Rev. A 35: 3825 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    B. Gao, Theory of slow-atom collisions, Phys. Rev. A 54: 2022 (1996).ADSGoogle Scholar
  24. 24.
    C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, and C.E. Wieman, Production of two overlapping Bose-Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78: 586(1997).ADSCrossRefGoogle Scholar
  25. 25.
    P.S. Julienne, F.H. Mies, E. Tiesinga, and C.J. Williams, Collisional stability of double Bose condensates, Phys. Rev. Lett. 78: 1880 (1997).ADSCrossRefGoogle Scholar
  26. 26.
    B.D. Esry, C.H. Greene, J.P. Burke, Jr., and J.L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett. 78: 3594 (1997).ADSCrossRefGoogle Scholar
  27. 27.
    A.J. Moerdijk, H.M.J.M. Boesten, and B.J. Verhaar, Decay of trapped ultracold alkali atoms by recombination, Phys. Rev. A 53: 916 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    R. Côté and A. Dalgarno, Elastic scattering of two Na atoms, Phys. Rev. A 50: 4827 (1994).ADSCrossRefGoogle Scholar
  29. 29.
    R. Côté, A. Dalgarno, H. Wang, and W.C. Stwalley, Potassium scattering lengths and prospects for Bose-Einstein condensation and sympathetic cooling, Phys. Rev. A 57: R4118 (1998).ADSGoogle Scholar
  30. 30.
    J.P. Burke, Jr., J.L. Bohn, B.D. Esry, and C.H. Greene, Prospects for mixed-isotope Bose-Einstein condensates in rubidium, Phys. Rev. Lett. 80: 2097 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    J. Söding, D. Guéry-Odelin, P. Desbiolles, G. Ferrari, and J. Dalibard, Giant spin relaxation of an ultracold cesium gas, Phys. Rev. Lett. 80: 1869 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    E. Tiesinga, C.J. Williams, P.S. Julienne, K.M. Jones, P.D. Lett, and W.D. Phillips, A spectroscopic determination of scattering lengths for sodium atom collisions, J. Res. Natl. Inst. Stand. Technol. 101: 505 (1996).CrossRefGoogle Scholar
  33. 33.
    A.A. Radzig and B.M. Smirnov, Reference Data on Atoms, Molecules, and lons, Springer-Verlag, Berlin (1985).CrossRefGoogle Scholar
  34. 34.
    Conceptually the technique is related to buffer gas cooling, see; J. Kim, B. Friedrich, D.P. Katz, D. Patterson, J.D. Weinstein, R. DeCarvalho, and J.M. Doyle, Buffer-gas loading and magnetic trapping of atomic Europium, Phys. Rev. Lett. 78: 3665 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    A master equation approach to the problem was proposed by M. Lewenstein, J.I. Cirac, and P. Zoller, Master equation for sympathetic cooling of trapped particles, Phys. Rev. A 51: 4617 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    R.K. Pathria, Statistical Mechanics, Pergamon Press, Oxford (1986).Google Scholar
  37. 37.
    D. Pines and P. Nozieres, The Theory of Quantum Liquids, Vol. I & II, Addison-Wesley Publishing Company, New York (1989).Google Scholar
  38. 38.
    P. Danielewicz, Quantum theory of nonequilibrium processes, Ann. Phys. 152: 239 (1984).ADSCrossRefGoogle Scholar
  39. 39.
    A.J. Moerdijk, B.J. Verhhar, and A. Axelsson, Resonances in ultracold collisions of 6Li, 7Li, and 23Na, Phys. Rev. A 51: 4852 (1995).ADSCrossRefGoogle Scholar
  40. 40.
    S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, and W. Ketterle, Observation of Feshbach resonances in a Bose-Einstein condensate, Nature 392: 151 (1998).ADSCrossRefGoogle Scholar
  41. 41.
    E. Timmermans, P. Tommasini, R. Côté, M. Hussein, and A. Kerman, Inter-condensate tunneling in Bose-Einstein condensates with Feshbach resonances, Los Alamos e-print archive, Report No. condmat/9805323 (submitted to Phys. Rev. Lett.).Google Scholar
  42. 42.
    P. Tommasini, E. Timmermans, M. Hussein, and A. Kerman, Feshbach resonance and hybrid atomic/molecular BEC-systems, Los Alamos e-print archive, Report No. cond-mat/9804015 (submitted to Phys. Rev. B).Google Scholar
  43. 43.
    N. Balakrishnan, R.C. Forrey, and A. Dalgarno, Quenching of H2 vibrations in ultracold 3He and 4He collisions, Phys. Rev. Lett. 80: 3224 (1998).ADSCrossRefGoogle Scholar
  44. 44.
    E. Timmermans, P. Tommasini, and K. Huang, Variational Thomas-Fermi theory of a nonuniform Bose condensate at zero temperature, Phys. Rev. A 55: 3645 (1997).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Robin Côté
    • 1
  • Eddy Timmermans
    • 2
  • Paolo Tommasini
    • 1
  1. 1.Institute for Theoretical Atomic and Molecular Physics (ITAMP)Center for AstrophysicsCambridgeUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations