Anisotropic Expansion of Finite Temperature Bose Gases — Emergence of Interaction Effects Between Condensed and Non-Condensed Atoms

  • Chien Liu
  • B. D. Buschi
  • Zachary Dutton
  • Lene Vestergaard Hau
Part of the Physics of Atoms and Molecules book series (PAMO)


We present calculations that reveal an anisotropic expansion of the non-condensed component in Na clouds cooled below the critical temperature for Bose-Einstein condensation and subsequently released from the asymmetric magnetic trapping potential. Each atomic cloud is composed of a central condensate and a more extended distribution of non-condensed “thermal” atoms. The interaction between the condensed and non-condensed components of the cloud is found to influence their rates of expansion. The noncondensed component is accelerated and the condensed component is decelerated due to the repulsive interaction between the atoms, with the largest effects occuring in the tightly confined direction of the asymmetric trap.


Anisotropic Expansion Condensed Atom Thermal Atom Condensate Wave Function Condensate Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. Anderson et al., Science 269, 198 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    K. B. Davis et al., Phys. Rev. Lett. 75, 3969 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    C. C. Bradley et al., Phys. Rev. Lett. 78, 985 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    L. V. Hau et al., in Photonic, Electronic, and Atomic Collisions, Invited papers of the XX.ICPEAC, Vienna, Austria, July 1997, eds F. Aumayr and HP. Winter, (World Scientific, Singapore, 1998).Google Scholar
  5. 5.
    U. Ernst et al., Europhys. Lett. 41, 1 (1998).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    M. J. Holland et al., Phys. Rev. Lett. 78, 3801 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    A. Rahrl et al., Phys. Rev. Lett. 78, 4143 (1997); H. Wallis and H. Steck, Europhys. Lett, 41, 477 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    L. V. Hau et al., Phys. Rev. A 58, R54 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    S. Giorgini et al., J. Low Temp. Phys. 109, 309 (1997)ADSGoogle Scholar
  11. 11.
    E. Tiesinga et al., J. Res. Natl. Inst. Stand. Tech. 101, 505 (1996).CrossRefGoogle Scholar
  12. 12.
    J. M. Feagin, Quantum Methods with Mathematica (Springer-Verlag, New York, 1994), pp. 164, and references therein.zbMATHCrossRefGoogle Scholar
  13. 13.
    At densities of 1014/cm3 or above, the interaction between the thermal atoms is not negligible. See H. Wu and E. Arimondo, Europhys. Lett., 43, 141 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Chien Liu
    • 1
  • B. D. Buschi
    • 1
    • 2
  • Zachary Dutton
    • 1
    • 2
  • Lene Vestergaard Hau
    • 1
    • 2
  1. 1.Rowland Institute for ScienceCambridgeUSA
  2. 2.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations