Advertisement

Triple Differential Cross Sections for the Electron Impact Ionization of Helium, Neon and Argon From 0.1 To 1 Kev. Theory and Experiment Compared

  • A. A. Pinkás
  • M. A. Coplan
  • J. H. Moore
  • S. Jones
  • D. H. Madison
  • J. Rasch
  • Colm T. Whelan
  • R. J. Allan
  • H. R. J. Walters
Chapter
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

The triple differential cross section (TDCS) for electron impact ionization of atoms is proportional to the momentum density of the ejected electron under conditions when the colliding electrons can be considered to be free and the interactions between the incident, scattered and ejected electrons with the residual ion can be neglected. These are the conditions of the plane wave impulse approximation (PWIA). Under such circumstances, the measured “momentum densities” can be used to investigate single electron atomic wave functions and correlate these with the chemical and physical properties of the atoms. For these studies to be meaningful, the data should have a relative precision of 5 to 10%, (see for example the discussion of experimental precision in (e, 2e) collisions by Moore et al.1) To attain this degree of precision at incident electron energies of 1 keV or greater, the typical energies for such experiments, requires data acquisition times of several hours to days with current technologies. An alternative is to decrease the incident energy in order to increase the absolute value of the TDCS. While this is an attractive alternative, it is essential to recognize that as the incident energy is decreased the interactions between the incident, scattered and ejected electrons and the residual ion become relatively more important, until the point is reached where the TDCS is not even approximately proportional to the single electron momentum density.

Keywords

Incident Energy Atomic Unit Time Spectrum Momentum Density Incident Electron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Moore, J. A. Tossell, M. A. Coplan, J. W. Cooper, and J. P. Doering, Knockout reactions to study atomic and molecular electronic Structure: the future, (e, 2e) and Related Processes, C. T. Whelan, H. R. J. Walters, A. Lahmam-Bennani, and J. Ehrhardt, eds., NATO ASI Series C: Mathematical and Physical Sciences, Vol. 414, Kluwer, Dordecht (1993), p. 91.Google Scholar
  2. 2.
    U. Arnaldi, A. Egidi, R. Marconero, and G. Pizzella, 1969, Use of a two channeltron coincidence in a new line of research in atomic physics, Rev. Sci. Instr. 40:1001.ADSCrossRefGoogle Scholar
  3. 3.
    R. Camilloni, A. Giardini-Guidoni, R. Tiribelli, and G. Stefani, 1972, Coincidence measurements of quasifree scattering of 9-keV electrons on K and L shells of carbon, Phys. Rev. Lett. 29:618.ADSCrossRefGoogle Scholar
  4. 4.
    E. Weigold, S. T. Hood, and P. J. O. Teubner, 1973, Energy and angular correlations of the scattered and ejected electrons in the electron-impact ionization of argon, Phys. Rev. Lett. 30:475.ADSCrossRefGoogle Scholar
  5. 5.
    I. E. McCarthy and E. Weigold, 1976, (e, 2e) spectroscopy, 27C:275; I. E. McCarthy and E. Weigold, 1988, Wavefunction mapping in collision experiments, Phys. Rep., Rep. Prog. Phys., 51:301.Google Scholar
  6. 6.
    E. Weigold, 1990, Electron-impact ionization ((e, 2e)) studies of atoms — some recent developments, Aust. J. Phys., 43:543.ADSGoogle Scholar
  7. 7.
    E. Weigold and I. E. McCarthy, 1978, (e, 2e) collisions, Adv. At. Mol. Phys., 14:127.ADSCrossRefGoogle Scholar
  8. 8.
    M. A. Coplan, J. H. Moore, and J. P. Doering, 1994, (e, 2e) spectroscopy, Rev. Mod. Phys., 66:985.ADSCrossRefGoogle Scholar
  9. 9.
    C. E. Brion, Molecular (e, 2e) collisions — present status and future prospects for electron momentum spectroscopy, Proceedings of the 18th International Conference on the Physics of Electronic and Atomic Collisions, AIP Conference Proceedings 295, T. Anderson, B. Fastrup, F. Folkmann, H. Knudsen, N. Andersen, eds., AIP Press, New York (1995), p. 350.Google Scholar
  10. 10.
    J. J. Neville, Y. Zheng, B. P. Hollebone, N. Cann, C. E. Brion, C. K. Kim, and S. Wolf, 1996, EMS studies of larger molecules of chemical and biochemical interest, Can. J. Phys., 74:773.ADSCrossRefGoogle Scholar
  11. 11.
    Y. Zheng, J. J. Neville, and C. E. Brion, 1995, Imaging the electron density in the highest occupied molecular orbital of glycine, Science, 270:786.ADSCrossRefGoogle Scholar
  12. 12.
    J. P. D. Cook, I. E. McCarthy, A. T. Stelbovics, and E. Weigold, 1984, Noncoplanar symmetric (e, 2e) momentum profile measurements for helium: an accurate test of helium wave functions, J. Phys. B.At. Mol. Opt. Phys., 17:2339; J. P. D. Cook, J. Mitroy, and E. Weigold, 1984, Direct observations of relativistic effects in single-electron momentum distributions in xenon outer shells, Phys. Rev. Lett., 52:1116; J. Lower and E. Weigold, 1989, Improved techniques in multiparameter coincidence experiments, J. Phys. E, 22:421; E. Weigold, 1990, Recent developments in electron momentum spectroscopy of atoms and molecules, J. Electron Spectrosc. Relat. Phenom., 51:629; P. Hayes, M. A. Bennett, J. Flexman, and J. F. Williams, 1988, Position sensitive detectors in (e, 2e) coincidence measurements, Rev. Sei. Instrum., 59:2445.ADSCrossRefGoogle Scholar
  13. 13.
    R. R. Goruganthu, M. A. Coplan, J. H. Moore, and J. A. Moore, and J. A. Tossell, 1988, (e, 2e) momentum spectroscopic study of the interaction of-CHin3} and-CF3 groups with the carbon-carbon triple bond}, J. Chem. Phys., 89:25ADSCrossRefGoogle Scholar
  14. 14.
    E. Clementi and C. Roetti, 1974, Roothaan-Hartree-Fock atomic wavefunctions, Atomic and Nuclear Data Tables, 14:177.ADSCrossRefGoogle Scholar
  15. 15.
    T. Rös ei, J. Röd er. L. Frost, K. Jung, H. Ehrhardt, S. Jones, and D. H. Madison, 1992, Absolute triple differential cross section for ionization of helium near threshold, Phys. Rev. A, 46:2539.ADSCrossRefGoogle Scholar
  16. 16.
    J. B. Furness and I. E. McCarthy, 1973, Semiphenomenological optical model for electron scattering on atoms, J. Phys. B: At. Mol. Opt. Phys., 6:2280.ADSCrossRefGoogle Scholar
  17. 17.
    D. H. Madison, V. D. Kravtsov, S. Jones and R. P. McEachran, 1996, Fine-structure effect for (e, 2e) collisions}, Phys. Rev. A, 53:2399.ADSCrossRefGoogle Scholar
  18. 18.
    C. Froese Fischer, 1972, A multi-configuration Hartree-Fock program with improved stability, Comput. Phys. Commun., 4:107.ADSCrossRefGoogle Scholar
  19. 19.
    I. E. McCarthy and J. Mitroy, 1986, Distorted wave impulse approximation for symmetric (e, 2e) measurements in helium, Phys. Rev. A, 34:4426.ADSCrossRefGoogle Scholar
  20. 21.
    A. J. Dixon, I. E. McCarthy, C. J. Noble, and E. Weigold, 1978, Factorized distorted-wave approximation for the (e, 2e) reaction on atoms: noncoplanar symmetric geometry, Phys. Rev. A, 17:597.ADSCrossRefGoogle Scholar
  21. 20.
    K. T. Leung and C. E. Brion, 1983, Experimental investigation of the valence orbital momentum distributions and ionization energies of the noble gases by binary (e, 2e) spectroscopy, Chem. Phys., 82:87.ADSCrossRefGoogle Scholar
  22. 22.
    I. E. McCarthy and E. Weigold, 1985, Noncoplanar symmetric (e, 2e) reaction on argon}, Phys. Rev. A, 31:160.ADSCrossRefGoogle Scholar
  23. 23.
    S. T. Hood, I. E. McCarthy, P. J. O. Teubner and E. Weigold, 1973, Angular correlation for (e, 2e) reactions on atoms}, Phys. Rev. A, 8:2494.ADSCrossRefGoogle Scholar
  24. 24.
    E. Weigold, S. T. Hood, and P. J. O. Teubner, 1973, Energy and angular correlations of the scattered and ejected electrons in the electron-impact ionization of argon, Phys. Rev. Lett., 30:475.ADSCrossRefGoogle Scholar
  25. 25.
    P. Bickert, W. Hink, C. Dal Cappello, and A. Lahmam-Bennani, 1991, Triple differential cross section of single Ar (2p) ionization by electron impact in the keV region, J. Phys. B: At. Mol. Opt. Phys., 24:4603.ADSCrossRefGoogle Scholar
  26. 26.
    X. Zhang, C. T. Whelan, H. R. J. Walters, R. J. Allan, P. Bickert, W. Hink, and S. Schoenberger, 1992, (e, 2e) cross sections for inner-shell ionization of argon and neon, J. Phys. B: At. Mol. Opt. Phys., 25:4325.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • A. A. Pinkás
    • 1
  • M. A. Coplan
    • 2
  • J. H. Moore
    • 2
  • S. Jones
    • 3
  • D. H. Madison
    • 3
  • J. Rasch
    • 4
  • Colm T. Whelan
    • 5
  • R. J. Allan
    • 6
  • H. R. J. Walters
    • 7
  1. 1.Jersey City State CollegeJersey CityUSA
  2. 2.University of MarylandCollege ParkUSA
  3. 3.University of MissouriRollaUSA
  4. 4.Institut de PhysiqueMetz Cedex 03France
  5. 5.Department of Applied Mathematics and Theoretical PhysicsCambridge UniversityCambridgeGreat Britain
  6. 6.Daresbury LaboratoryWarringtonUK
  7. 7.Department of Applied Mathematics and Theoretical PhysicsQueens University of BelfastBelfastNorthern Ireland

Personalised recommendations