The R-Matrix-Floquet Theory of Multiphoton Processes

  • D. H. Glass
  • J. Colgan
  • P. G. Burke
Part of the Physics of Atoms and Molecules book series (PAMO)


The R-matrix-Floquet theory1 enables the interaction of intense laser fields with complex atoms and ions to be studied in a fully non-perturbative manner. In particular it has been used to study multiphoton ionization, laser-assisted electron-atom scattering, harmonic generation and multiphoton processes involving two incommensurate frequencies. Taking advantage of R-matrix theory the method is able to represent the atomic structure accurately and so, for example, the role of resonances in the ionization process can be studied in detail. This has permitted a wide range of atoms and negative ions to be considered including H, H-, He, Ne, Ar, Mg, F-, Cl- and Li-. As well as yielding total ionization rates, partial rates and angular distributions the R-matrix-Floquet approach has enabled other phenomena to be considered. Of particular interest here has been the study of laser-induced degenerate states (LIDS) such as those found in Ar2,3. An example of a LIDS process will be considered below.


Multiphoton Ionization Autoionizing State Multiphoton Process Intense Laser Field Photodetachment Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.G. Burke, P. Francken and C.J. Joachain, J. Phys. B24:761 (1991).ADSGoogle Scholar
  2. 2.
    O. Latinne, N.J. Kylstra, M. Dörr, J. Purvis, M. Terao-Dunseath, C.J. Joachain, P.G. Burke and C.J. Noble, Phys. Rev. Lett. 74:46 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    A. Cyr, O. Latinne and P.G. Burke, J. Phys. B30:659 (1997).ADSGoogle Scholar
  4. 4.
    D.H. Glass, P.G. Burke, H.W. van der Hart and C.J. Noble, J. Phys. B30:3801 (1997).ADSGoogle Scholar
  5. 5.
    M. Dörr, M. Terao-Dunseath, J. Purvis, C.J. Noble, P.G. Burke and C.J. Joachain, J. Phys. B25:2809 (1992).ADSGoogle Scholar
  6. 6.
    D.H. Glass, P.G. Burke, C.J. Noble and G.B. Wöste, J. Phys. B to be published (1998).Google Scholar
  7. 7.
    U. Berzinsh, G. Haeffler, D. Hanstorp, A. Klinkmüller, E. Lindroth, U. Ljungblad and D.J. Pegg, Phys. Rev. Lett. 74:4795 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    C.A. Ramsbottom, K.L. Bell and K.A. Berrington, J. Phys. B27:2905 (1994).ADSGoogle Scholar
  9. 9.
    J. Dellwo, Y. Liu, C.Y. Tang and D.J. Pegg Phys. Rev.. A46:3924 (1992).ADSGoogle Scholar
  10. 10.
    J. Purvis, M. Dörr, M. Terao-Dunseath, C.J. Joachain, P.G. Burke and C.J. Noble, Phys. Rev. Lett. 71:3943 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    C.J. Joachain, Proceedings of the 7th International Conference on Multiphoton Processes, ed. P Lambropoulos and H Walther (1996), Institute of Physics Publishing.Google Scholar
  12. 12.
    D. Charlo, M. Terao-Dunseath, K.M. Dunseath and J-M. Launay J. Phys. B to be published (1998).Google Scholar
  13. 13.
    N.J. Kylstra, H.W.van der Hart, C.J. Joachain and P.G. Burke J. Phys. B to be published (1998).Google Scholar
  14. 14.
    H. Teng, M.S.T. Watts, P.G. Burke and V.M. Burke J. Phys. B31:1355 (1998).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • D. H. Glass
  • J. Colgan
  • P. G. Burke
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsThe Queen’s University of BelfastBelfastUK

Personalised recommendations