Photoabsorption of Positive Ions

  • Gerard O’Sullivan
Part of the Physics of Atoms and Molecules book series (PAMO)


The dual laser produced plasma (DLP) technique has been applied very successfully to the generation of photoabsorption spectra of ions, atoms and corrosive species such as halogens.1-5 In this method, one high power laser pulse, usually from a Q-switched laser, is used to produce a plasma of the ions of interest while a second pulse is tightly focused onto a heavy lanthanide (Z≥62) or tungsten target to provide an intense soft X-ray/EUV backlighting continuum. If the target used is samarium, the continuum is line free from 30-2,000Å.6 By varying the interpulse time delay, changing the pulse power density or probing different plasma regions, absorption from different ion stages may be obtained. Currently both photographic and photoelectronic detection is used; the former gives excellent energy resolution (ΔE/E≈l04-105) but at the expense of very poor intensity information, while the latter has medium energy resolution (ΔE/E≈103-104) and limited energy coverage but possesses linear intensity response and good dynamic range. Photographic plates are thus most suitable for investigating sharp features and spectra which span an extensive energy range while photoelectric detection is preferred for the investigation broad resonance features and autoionizing line profiles. However it should be pointed out that plasma broadening effects (Δλ∼0.05Å) are such that the resolution available photographically is rarely exploited in recording ion spectra.


Giant Dipole Resonance High Power Laser Pulse Photoelectric Detection Plasma Electron Temperature Photoabsorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. O’Sullivan, P.K. Carroll, J. Conway, P. Dunne, R. Faulkner, T. McCormack, C. McGuinness, P. van Kampen and B. Weinmann. Extreme-ultraviolet continuum emission from laser-generated plasmas and applications to spectroscopy. Opt. Eng. 33:3993 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    E.T. Kennedy, J.T. Costello, J.P. Mosnier, A.A. Cafolla, M. Collins, L. Kiernan, U. Köble, M.H. Sayyad, M. Shaw, B.F. Sontag and R. Barchewitz. Extreme-ultraviolet studies with laser produced plasmas, Opt. Eng. 33:3984 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    J.T. Costello, E.T. Kennedy, B.F. Sonntag and C.L. Cromer, XUV photoabsorption of laser-generated W and Pt vapours, J. Phys. B24:5063 (1991).ADSGoogle Scholar
  4. 4.
    G. O’Sullivan, C. McGuinness, E.T. Kennedy, J.T. Costello and B. Weinmann, Trends in 4d-shell photoabsorption along the iodine isonuclear sequence I, I+ and I2+, Phys. Rev. A53:3211 (1996).ADSGoogle Scholar
  5. 5.
    A. Cummings and G. O’Sullivan, Discrete structure in the 3d photoabsorption spectra of neutral, singly and doubly ionised bromine, Phys. Rev. A54:323 (1996).ADSGoogle Scholar
  6. 6.
    P.K. Carroll, E.T. Kennedy and G. O’Sullivan, Laser produced continuum for absorption spectroscopy in the vacuum UV and XUV, Appl. Opt.l9:1454 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    P.K. Carroll and E.T. Kennedy, Doubly excited autoionization resonances in the absorption spectrum of Li+ formed in a laser produced plasma, Phys. Rev. Lett. 38:1068 (1977).ADSCrossRefGoogle Scholar
  8. 8.
    E. Jannitti, P. Nicolosi and G. Tondello, Photoionisation and double excitation spectrum of Be2+, Opt. Commun. 50:225 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    P. van Kampen, G. O’Sullivan, V.K. Ivanov, A.N. Ipatov, J.T. Costello and E.T. Kennedy, Dramatic changes in the 3s autoionization process at the beginning of the Ar sequence, Phys. Rev. Lett. 78:3082 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    T.B. Lucartorto and T.J. McIlrath, Efficient laser production of a Na+ ground-state plasma column: absorption spectroscopy and photoionization measurement of Na+, Phys. Rev. Lett. 37:428 (1976).ADSCrossRefGoogle Scholar
  11. 11.
    D.L. Ederer, Photoionisation of the 4d electrons in xenon, Phys. Rev. Lett. 13:760 (1964).ADSCrossRefGoogle Scholar
  12. 12.
    A. Cummings and G. O’Sullivan, Discrete structure in the 4d photoabsorption spectrum of Cs+, J. Phys. B30:5599 (1997).ADSGoogle Scholar
  13. 13.
    T.B. Lucartorto, T.J. Mcllrath, J. Sugar and S.M. Younger, Radical redistribution of the 4d oscillator strength observed in the photoabsorption of the Ba, Ba+ and Ba++ sequence, Phys. Rev. Lett. 47:1124 (1981).ADSCrossRefGoogle Scholar
  14. 14.
    U. Köble, L. Kiernan, J.T. Costello, J.P. Mosnier, E.T. Kennedy, V.K. Ivanov, V.A. Kupchenko and M.S. Shendrik, 4f(1P) Giant dipole resonance in La3+, Phys Rev. Lett. 74:2188 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    R.D. Cowan, Theoretical calculation of atomic spectra using digital computers, J. Opt. Soc. Am. 58:808 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    P.K. Carroll and G. O’Sullivan, Grand state configurations of ionic species through XVI from Z = 57-74 and the interpretation of 4d-4f emission resonances in laser produced plasmas, Phys. Rev. A25:275 (1982).ADSGoogle Scholar
  17. 17.
    F. O’Reilly and P. Dunne, 3d photoabsorption in ZnIII and GeV, J. Phys. B31:L141 (1998).ADSGoogle Scholar
  18. 18.
    P. Dunne, G. O’Sullivan and V.K. Ivanov, Extreme ultraviolet absorption spectrum of Ga+, Phys. Rev. A48:4358(1993).ADSGoogle Scholar
  19. 19.
    C. McGuinness and G. O’Sullivan, The 5d absorption spectra of Pb2+ and Bi3+, to be published.Google Scholar
  20. 20.
    J.P. Mosnier, J.T. Costello, E.T. Kennedy, L. Kiernan and M.H. Sayyad, Even parity autoionizing states in the extreme-ultraviolet photoabsorption spectra of Mg, Al+ and Si2+. Phys. Rev. A49:755 (1994).ADSGoogle Scholar
  21. 21.
    P. van Kampen, L. Kiernan, J.T. Costello, E.T. Kennedy, J.A.M. van der Mullen and G. O’Sullivan, The 3p sphotabsorption spectra of KII and CaIII, J. Phys. B28:4771 (1995).ADSGoogle Scholar
  22. 22.
    C. McGuinness, G. O’Sullivan, P.K. Carroll, D. Audley and M.W.D. Mansfield, 3d absorption spectra of SrI through SrIV, Phys. Rev A51:2053 (1995).ADSGoogle Scholar
  23. 23.
    J.T. Costello, E.T. Kennedy, B.F. Sonntag and C.W. Clarke, 3p photoabsorption of free and bound Cr, Cr+, Mn and Mn+, Phys. Rev A43:1441 (1991).ADSGoogle Scholar
  24. 24.
    D. Donnelly, K.L. Bell and A. Hibbert, 3p photoabsorption of manganese II Phys. Rev. A54:974 (1996).ADSGoogle Scholar
  25. 25.
    V.K. Dolmatov, On the 3p photoabsorption cross section of free Mn+, J. Phys. B26:L79 (1993).Google Scholar
  26. 26.
    V.K. Dolmatov, and S.T. Manson, On the dependence of inner-shell photoionisation on the outer shell structure of Mn+, J. Phys B31:999 (1998).ADSGoogle Scholar
  27. 27.
    V.K. Dolmatov, First theoretical study of the 3p absorption cross-section of free Cr+, J. Phys. B29:L673 (1996).ADSGoogle Scholar
  28. 28.
    D. Donnelly, K.L. Bell and A. Hibbert, Breit-Pauli R-matrix calculation of the 3p photoabsorption of singly ionised chromium, J. Phys. B30:L285 (1997).ADSGoogle Scholar
  29. 29.
    E. Jannitti, P. Nicolosi, P. Villoresi and F. Xianping, Measurement of the K-shell photoionsation cross-section of CIV through the L-shell photoabsorption spectra, Phys. Rev. A51:314 (1995).ADSGoogle Scholar
  30. 30.
    C. McGuinness, K.L. Bell and A. Hibbert, K-shell photoionization cross-section of carbon IV, J. Phys. B30:59 (1972).ADSGoogle Scholar
  31. 31.
    G. O’Sullivan, P.K. Carroll, P. Dunne, C. McGuinness and N. Murphy, Supercomplex spectra and continuum emission from rare earth ions; Sm a case study (in press Phys. Rev. A)Google Scholar
  32. 32.
    V.V. Flambaum, A.A. Gribakina and G.F. Gribakin, Narrow chaotic compound autoionizing states in atomic spectra, Phys. Rev. A54:2066 (1996).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Gerard O’Sullivan
    • 1
  1. 1.Physics DepartmentUniversity College DublinBelfield, Dublin 4Ireland

Personalised recommendations