Advertisement

Positron and Positronium Collisions

  • Gaetana Laricchia
Chapter
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

During the last few years, there has been considerable experimental progress in the study of positron collisions with atoms and molecules, including near-threshold1,2 and differential studies3,4,5 of specific scattering channels as well as results for experimentally difficult (but theoretically more tractable) targets such as atomic hydrogen6,7,8 and alkali atoms9. In addition to the intrinsic interest in studying characteristic processes such as annihilation10,11,12, the investigation of collisions involving positrons can be useful for probing general collision effects, especially when compared with other projectiles which differ in mass or charge13,14. A recent development has been the production of atomic beams of monoenergetic positronium15 (Ps, the bound state of a positron and an electron) which are enabling direct measurements of total cross-sections16,17,18 and stimulating considerable theoretical activity19,20,21,22,23. Highlights of this recent progress, as well as some indication of possible future developments are presented in this brief review. The interested reader is also referred to the reviews of James Walters and Helge Knudsen in this volume.

Keywords

Annihilation Rate Nucl Instr Meth Eject Electron Energy Incident Positron Energy Annihilation Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P Ashley, J Moxom and G Laricchia Phys Rev Lett 77 (1996) 1250ADSCrossRefGoogle Scholar
  2. 2.
    J Moxom, G Laricchia, M Charlton, Á Kövér and WE Meyerhof Phys Rev A 50 (1994) 3129ADSCrossRefGoogle Scholar
  3. 3.
    Á Kövér and G Laricchia Phys Rev Lett 80 (1998) 5309ADSCrossRefGoogle Scholar
  4. 4.
    T Falke, T Brandt, O Kuhl, W Raith and M Weber J Phys B 30 (1997) 3247ADSCrossRefGoogle Scholar
  5. 5.
    Á Kövér, G Laricchia and M Charlton J Phys B 26 (1993) L575; J Phys B 27 (1994) 2409CrossRefGoogle Scholar
  6. 6.
    GO Jones, M Charlten, J Slevin, G Laricchia, Á Kövér, MR Poulsen and SN Chormaic J Phys B 26 (1993) L483ADSCrossRefGoogle Scholar
  7. 7.
    M Weber, A Hofman, W Raith, W Sperber, FM Jacobsen and KG Lynn Hyperfine Interactions 89 (1994) 221ADSCrossRefGoogle Scholar
  8. 8.
    S Zhou, H Li, WE Kauppila, CK Kwan and TS Stein Phys Rev A 55 (1997) 361ADSCrossRefGoogle Scholar
  9. 9.
    TS Stein, J Jiang, WE Kauppila, CK Kwan, H Li, A Surdutovich and S Zhou Can J Phys 74 (1996) 313CrossRefGoogle Scholar
  10. 10.
    K Iwata, RG Greaves, TJ Murphy, MD Tinkle and CM Surko Phys Rev A 51 (1995) 73ADSCrossRefGoogle Scholar
  11. 11.
    G Laricchia and C Wilkin Phys Rev Lett 79 (1997) 2241; Nucl Instr Meth B (1998) in press; G Laricchia Mat Sc Forum 255 (1997) 228ADSCrossRefGoogle Scholar
  12. 12.
    P Van Reeth and JW Humberston J Phys B 31 (1998) L231CrossRefGoogle Scholar
  13. 13.
    V Kara, K Paludan, J Moxom, P Ashley and G Laricchia J Phys B 30 (1997) 3933ADSCrossRefGoogle Scholar
  14. 14.
    K Paludan, G Laricchia, P Ashley, V Kara, J Moxom, H Bluhme, H Knudsen, U Mikkelsen, SP Moller, E Uggerhoj, E Morenzoni J Phys B 30 (1997) L581ADSCrossRefGoogle Scholar
  15. 15.
    G Laricchia in “Positron Spectroscopy of Solids” Proceedings of the International School of Physics «Enrico Fermi» vol. 125 A Dupasquier and AP Mills, eds (IOS; Amsterdam) (1995) p401Google Scholar
  16. 16.
    N Zafar, G Laricchia, M Charlten and A Garner Phys Rev Letts 4 (1996) 1595ADSCrossRefGoogle Scholar
  17. 17.
    AJ Garner, G Laricchia and A Ozen J Phys B 29 (1996) 5691CrossRefGoogle Scholar
  18. 18.
    AJ Garner, G Laricchia and A Ozen Nucl Instr Meth B (1998) in pressGoogle Scholar
  19. 19.
    CP Campbell, MT McAlinden, FRGS MacDonald and HRJ Walters Phys Rev Letts 80 (1998) 5097ADSCrossRefGoogle Scholar
  20. 20.
    MT McAlinden, FRGS MacDonald and HRJ Walters Can Jour Phys 74 (1996) 434ADSCrossRefGoogle Scholar
  21. 21.
    NK Sarkar and AS Ghosh J Phys B 30 (1997) 4591ADSCrossRefGoogle Scholar
  22. 22.
    PK Biswas and AS Ghosh Phys Lett A 223 (1996) 173ADSCrossRefGoogle Scholar
  23. 23.
    PK Sinha, P Chaudhury and AS Ghosh J Phys B 30 (1997) 4643ADSCrossRefGoogle Scholar
  24. 24.
    AA Kernoghan, DJR Robinson, MT McAlinden and HRJ Walters J Phys B 29 (1996) 2089ADSCrossRefGoogle Scholar
  25. 25.
    J Mitroy J Phys B 29 (1996) L263ADSCrossRefGoogle Scholar
  26. 26.
    A Hofmann, T Falke, W Raith, M Weber, DP Becker and KG Lynn J Phys B 30 (1997) 3297ADSCrossRefGoogle Scholar
  27. 27.
    V Kara, K Paludan, J Moxom, P Ashley and G Laricchia Nucl Instr Meth B (1998) in pressGoogle Scholar
  28. 28.
    WE Meyerhof and G Laricchia JPhys B 30 (1997) 2221ADSCrossRefGoogle Scholar
  29. 29.
    RM Finch, A Kövér, M Charlten and G Laricchia J Phys B 29 (1996) L667ADSCrossRefGoogle Scholar
  30. 30.
    W Ihra, JH Macek, F Mota-Furtado and PF O’Mahony Phys Rev Letts 78 (1997) 4027ADSCrossRefGoogle Scholar
  31. 31.
    J Berakdar Phys Rev Letts (1998) in pressGoogle Scholar
  32. 32.
    T Falke, W Raith and M Weber Phys Rev Letts 75 (1996) 3418ADSCrossRefGoogle Scholar
  33. 33.
    H Bluhme, H Knudsen, JP Merrison and MR Poulsen Phys Rev Letts 81 (1998) 73ADSCrossRefGoogle Scholar
  34. 34.
    e.g. JW Humberston et al J Phys B 30 (1997) 2477 and references therein.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Gaetana Laricchia
    • 1
  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations