Time Reversal Violation in the YBF Molecule

  • B. E. Sauer
  • S. B. Cahn
  • G. D. Redgrave
  • E. A. Hinds
Part of the Physics of Atoms and Molecules book series (PAMO)


Quantum electrodynamics is astonishingly accurate in its predictions of atomic and molecular phenomena and is the most successful physical theory to date. The standard model of elementary particle physics incorporates the additional effects of weak and strong interactions by generalizing the ideas of QED to make a quantum field theory of these three fundamental forces. Although the standard model has been extremely successful at explaining both particle physics and physics at the low energy scale of atoms and molecules, there is great interest in extensions to the standard model that would, for example, predict its arbitrary parameters such as the particle masses. [1] It may seem surprising that measurement of a simple molecular system could probe physics beyond the standard model, but that is the strategy our group at Sussex is pursuing; we are measuring the electric dipole moment (edm) of the electron.


Higgs Boson Applied Electric Field Electric Dipole Moment Physic Today Stray Magnetic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Kane, Physics Today 50, 40 (1997); P. Kalmus, Physics World 11, 26 (1998).CrossRefGoogle Scholar
  2. [2]
    W. Bernreuther and M. Suzuki, Rev. Mod. Phys. 63, 313 (1991), §III.ADSCrossRefGoogle Scholar
  3. [3]
    S. M. Barr, Int. J. Mod. Phys. A 8 209 (1993).ADSCrossRefGoogle Scholar
  4. [4]
    For example, the search for the Higgs boson is a primary motivation for the construction of the LHC at CERN, see eg. Physics Today 50, 58 (1997).Google Scholar
  5. [5]
    E. D. Commins, S. B. Ross, D. DeMille and B. C. Regan, Phys. Rev. A50, 2960 (1994).ADSGoogle Scholar
  6. [6]
    S. Dimopoulos and L.J. Hall, Phys. Lett. B344, 185 (1995).ADSGoogle Scholar
  7. [7]
    L. I. Schiff, Phys. Rev. 132, 2194 (1963); E. A. Hinds, Physica Scripta T70, 34 (1997).MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    P. G. H. Sandars, Phys. Lett. 14 194 (1965).ADSCrossRefGoogle Scholar
  9. [9]
    S. A. Murthy, D. Krause Jr., Z. L. Li and L. R. Hunter, Phys. Rev. Lett. 63, 965 (1989).ADSCrossRefGoogle Scholar
  10. [10]
    S. Rochester, D. Budker, D. DeMille, M. Zolotorev (LBNL preprint #42067)Google Scholar
  11. [11]
    P. G. H. Sandars, Phys. Rev. Lett. 19, 1396 (1967); The use of a polar molecule to search for de is implicit in this paper. The first explicit statement of the idea appears to be in O. P. Sushkov and V. V. Flambaum, Zh. Eksp. Theo. Fiz 75, 1208 (1978) [Sov. Phys. JETP 48, 608 (1978)].ADSCrossRefGoogle Scholar
  12. [12]
    B. E. Sauer, Jun Wang and E. A. Hinds, Phys. Rev. Lett. 74 1554 (1995); B. E. Sauer, Jun Wang and E. A. Hinds, J. Chem. Phys. 105 7412 (1996).ADSCrossRefGoogle Scholar
  13. [13]
    M. G. Kozlov, V. F. Ezhov, Phys. Rev. A 49, 4502 (1994); A. V. Titov, N. S. Mosyagin, V. F. Ezhov, Phys. Rev. Lett. 77, 5346 (1996); M. G. Kozlov, J. Phys. B: At. Mol. Opt. Phys. 30, L607 (1997); H. M. Quiney, H. Skaane, I. P. Grant, J. Phys. B: At. Mol. Opt. Phys. 31, L85 (1998); F. A. Parpia, J. Phys. B: At. Mol. Opt. Phys. 31, 1409 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • B. E. Sauer
    • 1
  • S. B. Cahn
    • 1
  • G. D. Redgrave
    • 1
  • E. A. Hinds
    • 1
  1. 1.Sussex Centre for Optical and Atomic PhysicsUniversity of SussexFalmer, BrightonUK

Personalised recommendations