Near Threshold Electron Impact Ionization of Neon and Argon

  • Bruno Rouvellou
  • Stéphane Rioual
  • Amédée Pochat
Part of the Physics of Atoms and Molecules book series (PAMO)


Electron-impact ionization of atoms is one of the basic process in physics in which few-body effects are illustrated. The most detailed information about electron impact ionization of atoms is available from (e,2e) experiments in which both electrons following an ionizing event are detected in coincidence. The kinematics of the collision is then fully determined and provides the measurement of triple differential cross sections (TDCS). In the past few years much effort has been devoted to the understanding of this process for the simplest atoms, and in particular, extensive studies have been performed on hydrogen and helium targets. At high energies (e.g. with excess energies of 100 eV and above) reasonable success has been achieved in describing the TDCS using a distorted wave Born approximation (DWBA)1. Below 100 eV the broad features of the experiment could be modeled in the DWBA description2,3 through the inclusion of polarization and post-collisional effects (PCI). This model has been able to reproduce the qualitative features of the TDCS down to few eV above threshold for both hydrogen4 and helium3.


Polarization Effect Excess Energy Electron Impact Ionization Distorted Wave Born Approximation Outgoing Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Whelan, R.J. Allan, H.R. J. Walters, and X. Zhang, in (e,2e) and Related Processes, edited by C.T. Whelan, H.R.J. Walters, A. Lahmam-Bennani, and H. Ehrhardt (Kluwer Academic, Dordrecht, 1993), p 1–32.Google Scholar
  2. 2.
    C.T. Whelan, R.J. Allan, J. Rasch, H.R.J. Walters, X. Zhang, J. Röder, K. Jung, and H. Ehrhardt, Phys. Rev. A 50, 4394 (1994).ADSGoogle Scholar
  3. 3.
    J. Rasch, PhD thesis University of Cambridge (1996).Google Scholar
  4. 4.
    J. Roder, J. Rasch, K. Jung, C.T. Whelan, H. Ehrhardt, R.J. Allan, and H.R.J. Walters, Phys. Rev. A 53, 225 (1996).ADSGoogle Scholar
  5. 5.
    T. Rösel, C. Dupré, J. Röder, A. Duguet, K. Jung, A. Lahmam-Bennani, and H. Ehrhardt, J. Phys. B 24, 3059–67 (1991).ADSGoogle Scholar
  6. 6.
    S. Rioual, A. Pochat, F. Gélébart, R.J. Allan, C.T. Whelan, and H.R.J. Walters, J. Phys. B 28, 5317 (1995).ADSGoogle Scholar
  7. 7.
    S. Bell, C.T. Gibson, and B. Lohmann, Phys. Rev. A 51, 2623 (1995).ADSGoogle Scholar
  8. 8.
    T. Rösel, K. Jung, H. Ehrhardt, X. Zhang, C.T. Whelan, and H.R.J. Walters J. Phys. B. 23 L649–53 (1990).CrossRefGoogle Scholar
  9. 9.
    S. Rioual, B. Rouvellou, A. Pochat, J. Rasch, H.R.J. Walters, C.T. Whelan, and R. J. Allan, J. Phys. B 30, L475–80 (1997).ADSGoogle Scholar
  10. 10.
    J. Röder, H. Ehrhardt, I. Bray, D.V. Fursa and I.E. McCarthy, J. Phys. B 29, 2103–14 (1996). ll.J. Rasch, C.T. Whelan, H.R.J. Walters, and R. J. Allan, Private comunication.ADSGoogle Scholar
  11. 12.
    B. Rouvellou, S. Rioual, J. Röder, A. Pochat, J. Rasch, Colm T. Whelan, H.R.J. Walters, and R. J. Allan, Phys. Rev. A 57, 3621 (1998).ADSGoogle Scholar
  12. 13.
    P. Selles, J. Mazeau, and A. Huetz, J. Phys. B 23, 2613 (1990).Google Scholar
  13. 14.
    C. Pan and A.F. Starace, Phys. Rev. A 45, 4588 (1992).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Bruno Rouvellou
    • 1
  • Stéphane Rioual
    • 1
  • Amédée Pochat
    • 1
  1. 1.Laboratoire des Collisions Electroniques et AtomiquesUFR Sciences et TechniquesBrest CédexFrance

Personalised recommendations