Negative Ion Resonances in Surface Dynamics: New Results and Applications

  • Lidija Šiller
  • Richard E. Palmer
Part of the Physics of Atoms and Molecules book series (PAMO)


Resonance scattering is an important type of low energy (1–30 eV) inelastic electron scattering from diatomic and polyatomic molecules in both the gas phase1 and in adsorbed or condensed phases. 2,3 The negative ion resonance (NIR) scattering mechanism is a short range scattering event in which the scattered electron is temporarily trapped in an unoccupied anti-bonding orbital of the target molecule, leading to the enhancement of the vibrational excitation cross-section.


Angular Distribution Scanning Tunnelling Microscope Electron Beam Energy Electron Attachment Resonance Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    GJ. Schulz, Rev. Mod. Phys. 45:423 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    R.E. Palmer and P.J. Rous, Rev. Mod. Phys. 64:383 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    R.E. Palmer, Prog. Surf. Sci. 41:51 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    U. Heinzmann, S. Holloway, A.W. Kleyn, R.E. Palmer and K.J. Snowdon, J. Phys.: Condens. Matter 8:3245 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    L. Sanche, J. Phys. B 23:1597 (1990).ADSGoogle Scholar
  6. 6.
    M. Wolf, Book of abstracts on “Fundamental Aspects of Surface Science: Elementary Processes in Surface Reactions, Eurpean Research Conference, Acquafredda di Maratea, Italy (1998)}.Google Scholar
  7. 7.
    K.B.K. Tang, R.E. Palmer, D. Teillet-Billy, J.P. Gauyacq, Chem. Phys. Lett. 277:321 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    L. Siller, S.L. Bennett, M.A. MacDonald, R.A. Bennett, R.E. Palmer and J.S. Foord, Phys. Rev. Lett. 76:1960 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    E.T. Jensen, R.E. Palmer, P.J. Rous. Phys. Rev.Lett. 64:1301 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    E.T. Jensen, R.E. Palmer, P.J. Rous, Surf. Sci. 237:153 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    K.B.K. Tang, R.E. Palmer, J. Villette, D. Teillet-Billy, J.P. Gauyacq, Surf. Sci. 368:43 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    M.F. Toney, S.C. Fain Jr., Phys. Rev. B 36:1248 (1987).ADSGoogle Scholar
  13. 13.
    J.P. McTague and M. Nielsen, Phys. Rev. Lett. 37:596 (1996); M. Nielsen and J.P. McTague, Phys. Rev. B 19: 3096 (1979)}.ADSCrossRefGoogle Scholar
  14. 14.
    P.W. Stephens, P.A. Heiney, R.J. Birgeneau, P.M. Horn, J. Stoltenberg, O.E. Vilches, Phys. Rev. Lett. 45:1959 (1980); G.J. Mochrie, M. Sutton, J. Akimitsu, R.J. Birgeneau, P.M. Horn, P. Dimon, D.E. Moncton, Surf. Sci. 138: 599 (1987).ADSCrossRefGoogle Scholar
  15. 15.
    K. Morshige, K. Mimata, S. Kittaka, Surf. Sci. 192:197 (1987).CrossRefGoogle Scholar
  16. 16.
    M.F. Toney, R.D. Diehl, S.C. Fain Jr., Phys. Rev. B 27:6413 (1983); M.F. Toney, S.C. Fain Jr., Phys. Rev. B 30: 1115 (1984); H. You, S.C. Fain, Phys. Rev. B 33:5886 (1986).ADSCrossRefGoogle Scholar
  17. 17.
    V.R. Bhethanabotla and W.A. Steele, Langmuir 3:581 (1987); Phys. Rev. B 41:9480 (1990).CrossRefGoogle Scholar
  18. 18.
    R.D. Etters and K. Kobashi, J. Chem. Phys. 81:6249 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    Y.P. Yoshi and D.J. Tildesley, Surf. Sci. 166:169 (1985).Google Scholar
  20. 20.
    P.J. Rous, R.E. Palmer, R.F. Willis, Phys. Rev. B 39:7552 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    P.J. Rous, R.E. Palmer and E.T. Jensen, Phys. Rev. B 41:4793 (1990).ADSGoogle Scholar
  22. 22.
    K.M. Hock and R.E. Palmer, J. Chem. Phys. 97:8736 (1992); L. Šiller, J.F. Wendelken, K.M. Hock and R.E. Palmer, Chem. Phys. Lett. 210:15 (1993).Google Scholar
  23. 23.
    P.J. Rous, Phys. Rev. Lett. 74:1835 (1995).ADSCrossRefGoogle Scholar
  24. 24.
    W. Ho, Surf. Sci. 300:996 (1994); L.J. Richter and R.R. Cavanagh, Prog. Surf. Sci. 39:155 (1992); X.-L. Zhou, X.-Y. Zhu and J.M. White, Surf. Sci. Rep. 13 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    D.M.P. Holland, D.A. Shaw, S.M. McSweeny, M.A. MacDonald, A. Hopkirk and M.A. Hayes, Chem. Phys. 173:315 (1993).CrossRefGoogle Scholar
  26. 26.
    H. Oertel, H. Schenk and H. Baumgartel, Chem. Phys. 46:251 (1980)CrossRefGoogle Scholar
  27. 27.
    P.M. Dehmer and W.A. Chupka, J. Chem. Phys. 62:4525 (1975).ADSCrossRefGoogle Scholar
  28. 28.
    K.B. Tang, R. Azria, Y. LeCoat, M. Tronc and R.E. Palmer, Z. fur Phys. D 38:41 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    T. Tada and T. Kanayama; Jpn. J. Appl. Phys. 35:L63 (1996).Google Scholar
  30. 30.
    T. Kanayama, private communications.Google Scholar
  31. 31.
    see for example, R. Hasunuma, T. Komeda, H. Mukaida, H. Tokumoto, J. Vac. Sci. Technol. B 15/4:1437 (1997); H. Tang, M.T. Cuberes, C. Joachim, J.K. Gimzewski, Surf. Sci. 386:115 (1997); P.J. Durston, R.E. Palmer, J.P. Wilcoxon, Appl. Phys. Lett. 72:176 (1998).CrossRefGoogle Scholar
  32. 32.
    F. Besenbacher, Rep. Prog. Phys. 59: 1737 (1996).ADSCrossRefGoogle Scholar
  33. 33.
    S.M. Gorwadkar, T. Wada, S. Haraichi, H. Hiroshima, K. Ishii and M. Komuro, Jpn. J. Appl. Phys: 35:6673 (1996); S. Haraichi, T. Wada, S.M. Gorwadkar, K. Ishi and H. Hiroshima, J. Vac. Sci. and Technogy, 15:1406 (1997).ADSCrossRefGoogle Scholar
  34. 34.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley; Nature 318:162 (1985).ADSCrossRefGoogle Scholar
  35. 35.
    R.C. Haddon, A.S. Perel, R.C. Morris, T.T.M. Palstra, A.F. Hebard and R.M. Fleming, Appl. Phys. Lett. 67:121 (1995).ADSCrossRefGoogle Scholar
  36. 36.
    R.L. McNally, J.R. Brotzen, A.J. Griffen Jr., P.J. Loos and E.V. Barrera; Mat. Res. Soc. Symp. Proc. 349:205 (1994).CrossRefGoogle Scholar
  37. 37.
    A.P.G. Robinson, R.E. Palmer, T. Tada, T. Kanayama and J.A. Preece, Appl. Phys. Lett. 72:1302 (1998).ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Coquel, M.R.C. Hunt, L. Šiller and R.E. Palmer, to be published. 39. S. Hunshe, T. Starczewski, A.l’ Huillier, A. Persson, C.-G. Wahlstrom, B. van Linden van den Heuvell and S. Svanberg, Phys. Rev. Lett. 77: 1966 (1996).CrossRefGoogle Scholar
  39. 40.
    L. E. Kline, D.K. Davies, C. L. Chen and P.J. Chantry, J. Appl. Phys. 50:6789 (1979).ADSCrossRefGoogle Scholar
  40. 41.
    M.S. Dresselhaus, G. Dresselhaus and P.C. Eklund; “ Science offullerenes and carbon nanotubes”, Academic Press, San Diego (1996).Google Scholar
  41. 42.
    S. Matejcik, P. Eichberger, B. Blunger, A. Kiendler, A. Stamatovic and T.D. Mark; Int. J. Mass Spectrom. Ion. Proc. 144: L13 (1995).ADSCrossRefGoogle Scholar
  42. 43.
    R. Jones, private communications.Google Scholar
  43. 44.
    U. Niggebrugge, M. Klug and G. Garus, Inst. Phys. Conf. Ser. No. 79:367 (1986).Google Scholar
  44. 45.
    G. Franz, Phys. Stat. Sol. 159:137 (1997).ADSCrossRefGoogle Scholar
  45. 46.
    S. A. Camphell, The Science and Engineering of Microelectronics Fabrication (Oxford University Press, 1996).Google Scholar
  46. 47.
    J.H. Thomas, G. Kaganowicz and J.W. Robinson, J. Electrochem. Soc. 135:1201 (1988).CrossRefGoogle Scholar
  47. 48.
    S. Sugata, A. Takamori, N. Takado, K. Asakawa, E. Miyauchi and H. Hashimoto, J. Vac. Sci. Technol. B 6:1087(1988).Google Scholar
  48. 49.
    .M. Burke, M.A. Quierin, M.P. Grimshaw, D.A. Ritchie, M. Pepper and J.H. Burroughes, J. Vac. Sci. Technol. B 15:325 (1997).CrossRefGoogle Scholar
  49. 50.
    T.M. Burke, S.J. Brown, M.P. Smith, E.H. Linfield, D.A. Ritchie, M. Pepper, K.B.K. Tang, R.E. Palmer and J.H. Burroughs, Appl. Surf. Sci. 123:308 (1998).ADSCrossRefGoogle Scholar
  50. 51.
    .M. Burke, M. P. Smith, S.J. Brown, D.A. Ritchie, M. Pepper, Y. Chen, J. Schmidt, L. Siller. Barnard and R.E. Palmer, to be published.Google Scholar
  51. 52.
    Y. Chen, J. Schmidt, L. Šiller, J.C. Barnard and R.E. Palmer, Phys. Rev. B 58 No. 3 (1998).Google Scholar
  52. 53.
    Y. Chen, J.C. Barnard, L. Šiller, J. Schmidt and R.E. Palmer, to be published.Google Scholar
  53. 54.
    Y. Chen, L. Šiller, J. Schmidt, J.C. Barnard and R.E. Palmer, to be published.Google Scholar
  54. 55.
    I.C. Walker, A. Sramatovic and S.F. Wong, J. Chem. Phys. 69:5532 (1978).ADSCrossRefGoogle Scholar
  55. 56.
    C.M. Goringe, L.J. Calrk, M.H. Lee, M.C. Payne, I. Stich, J.A. White, M.J. Gillan, and A.P. Sutton, J. Phys. Chem. B 101:1498 (1997).Google Scholar
  56. 57.
    T. Shimanouchi, Report No. NSRDS-NBS39, Vol I (1996).Google Scholar
  57. 58.
    O. J. Orient and S.K. Srivastava, J. Phys. B:At. Mol. Phys. 20:3923 (1987).ADSCrossRefGoogle Scholar
  58. 59.
    H.C. Straub, D. Lin, B.G. Lindsay, K.A. Smith and R.F. Stebbings, J. Chem. Phys. 106:4430 (1997).ADSCrossRefGoogle Scholar
  59. 60.
    R. Azria, L. Parneteau and L. Sanche, Phys. Rev. Lett. 59:638 (1987).ADSCrossRefGoogle Scholar
  60. 61.
    R.G. Sharpe, St. J. Dixon-Warren, P.J. Durston, R.E. Palmer, Chem. Phys. Lett. 234: 354 (1995).Google Scholar
  61. 62.
    R.G. Sharpe and R.E. Palmer, J. Phys. D: Appl. Phys. 29:837 (1996); R.G. Sharpe and R.E. Palmer, J. Appl. Phys. 79:8565 (1996).ADSCrossRefGoogle Scholar
  62. 63.
    G. Dittmer, Thin. Solid Films 9:141 (1995).ADSCrossRefGoogle Scholar
  63. 64.
    A.K. Ray and C.A. Hogarth, Int. J. Electronics 57:1 (1984).CrossRefGoogle Scholar
  64. 65.
    H. Pagnia and N. Sotnik, Phys. Stat. Sol. 90:771 (1988).ADSCrossRefGoogle Scholar
  65. 66.
    S.C. Chu and P. Burrow, Chem. Phys. Lett. 172:17 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Lidija Šiller
    • 1
  • Richard E. Palmer
    • 1
  1. 1.Nanoscale Physics Research LaboratorySchool of Physics and Astronomy, The University of BirminghamBirminghamUK

Personalised recommendations