Magnetic Atom Optics

  • E. A. Hinds
Part of the Physics of Atoms and Molecules book series (PAMO)


Over the last decade, the explosion of techniques for cooling, trapping, and manipulating atoms [1] has given birth to the field of atom optics [2] in which atoms are reflected, refracted, and diffracted, much as photons are in ordinary optics. Until recently the manipulation of atoms in flight has been largely restricted to small angle deflections of atomic or molecular beams. Focusing is typically achieved by electric quadrupole or magnetic hexapole fields whose gradients provide a force proportional to the distance from the axis [3, 4]. In two special cases atomic beams have also been focused by quantum reflection from a mirror: H from liquid He [5] and He from silicon [6]. With the advent of laser cooling it is now possible to prepare extremely cold atomic clouds which have such low thermal velocity that they fall almost vertically under gravity and can readily be deflected through large angles. In this paper we describe how we have imaged an 18 μK cloud of 85Rb atoms bouncing freely on a horizontal, concave magnetic atom mirror (radius of curvature R). A high-quality image is observed even after 14 reflections. Initially compact, the cloud is alternately collimated (odd bounces) and brought back to a focus (even bounces) when dropped from a height R/4. This multiple reconstruction of a thermally expanding cloud hinges on the microscopic reversal of the atomic motion. We discuss the principle of the magnetic reflector, the factors limiting the resolution of the mirror and the method of construction. We also speculate on some of the future applications of this method of atom manipulation


Mirror Surface Magnetic Force Microscope 85Rb Atom Magnetic Mirror Atom Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.S. Adams and E. Riis, Progress in Quantum Electronics 21, 1 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    Atom Optics. Edited by M. G. Prentiss and W. D. Phillips, SPIE Proceedings 2995, (1997).Google Scholar
  3. 3.
    N. F. Ramsey, Molecular Beams (OUP, Oxford, 1985)Google Scholar
  4. 4.
    W. G. Kaenders, F. Lison, F. Richter, R. Wynands, D. Meschede, Nature 375, 214 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    J. J. Berkhout et al. Phys. Rev. Lett. 63, 1689 (1989).ADSCrossRefGoogle Scholar
  6. 6.
    B. Holst and W. Allison, Nature 390, 244 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    R. J. Cook and R. K. Hill, Opt. Comm. 43, 258 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    A. Landragin et al., Opt. Lett. 21, 1591 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    As suggested by G. I. Opat, J. S. Wark, A. Cimmino, Appl. Phys. B 54, 396 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    T. M. Roach et al., Phys. Rev. Lett. 75, 629 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    A. I. Sidorov et al., Quant. Semiclass. Opt. 8, 713 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    I. G. Hughes, P. A. Barton, T. M. Roach, M. G. Boshier, E. A. Hinds, J. Phys. B 30, 647 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    I. G. Hughes, P. A. Barton, T. M. Roach, E. A. Hinds, J. Phys. B 30, 2119 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, Sixth Edition 1980) p. 303.Google Scholar
  15. 15.
    It is worth noting that all the recording media we have studied evolve remarkably little gas.Google Scholar
  16. 16.
    E. L. Hahn,. Phys. Rev. 80, 580 (1950).ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    G. N. Coverdale, R. W. Chantrell, A. Satoh and R Vietch, J. Appl. Phys. 81, 3818 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    M. Drndic et al., Appl. Phys. Lett. 72, 2906 (1998); K. S. Johnson et al., Phys. Rev. Lett. 81, 1137 (1998).Google Scholar
  19. 19.
    H. Wallis, J. Dalibard, C. Cohen-Tannoudji, Appl. Phys. B 54, 407 (1992).ADSCrossRefGoogle Scholar
  20. 20.
    E. A. Hinds, M. G. Boshier, and I. G. Hughes, Phys. Rev. Lett. 80, 645 (1998).ADSCrossRefGoogle Scholar
  21. 21.
    P. D. Lett, et al., J. Opt. Soc. Am. B. 6, 2084 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    B. M. Garraway and. K-A. Suominen, Rep. Prog. Phys. 58, 365 (1995).ADSCrossRefGoogle Scholar
  23. 23.
    F. Abeelen and B. Verhaar, private communication (1997).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • E. A. Hinds
    • 1
  1. 1.Sussex Centre for Optical and Atomic PhysicsUniversity of SussexBrightonUK

Personalised recommendations