Skip to main content

Part of the book series: Physics of Atoms and Molecules ((PAMO))

  • 269 Accesses

Abstract

Over the last decade, the explosion of techniques for cooling, trapping, and manipulating atoms [1] has given birth to the field of atom optics [2] in which atoms are reflected, refracted, and diffracted, much as photons are in ordinary optics. Until recently the manipulation of atoms in flight has been largely restricted to small angle deflections of atomic or molecular beams. Focusing is typically achieved by electric quadrupole or magnetic hexapole fields whose gradients provide a force proportional to the distance from the axis [3, 4]. In two special cases atomic beams have also been focused by quantum reflection from a mirror: H from liquid He [5] and He from silicon [6]. With the advent of laser cooling it is now possible to prepare extremely cold atomic clouds which have such low thermal velocity that they fall almost vertically under gravity and can readily be deflected through large angles. In this paper we describe how we have imaged an 18 μK cloud of 85Rb atoms bouncing freely on a horizontal, concave magnetic atom mirror (radius of curvature R). A high-quality image is observed even after 14 reflections. Initially compact, the cloud is alternately collimated (odd bounces) and brought back to a focus (even bounces) when dropped from a height R/4. This multiple reconstruction of a thermally expanding cloud hinges on the microscopic reversal of the atomic motion. We discuss the principle of the magnetic reflector, the factors limiting the resolution of the mirror and the method of construction. We also speculate on some of the future applications of this method of atom manipulation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.S. Adams and E. Riis, Progress in Quantum Electronics 21, 1 (1997).

    Article  ADS  Google Scholar 

  2. Atom Optics. Edited by M. G. Prentiss and W. D. Phillips, SPIE Proceedings 2995, (1997).

    Google Scholar 

  3. N. F. Ramsey, Molecular Beams (OUP, Oxford, 1985)

    Google Scholar 

  4. W. G. Kaenders, F. Lison, F. Richter, R. Wynands, D. Meschede, Nature 375, 214 (1995).

    Article  ADS  Google Scholar 

  5. J. J. Berkhout et al. Phys. Rev. Lett. 63, 1689 (1989).

    Article  ADS  Google Scholar 

  6. B. Holst and W. Allison, Nature 390, 244 (1997).

    Article  ADS  Google Scholar 

  7. R. J. Cook and R. K. Hill, Opt. Comm. 43, 258 (1982).

    Article  ADS  Google Scholar 

  8. A. Landragin et al., Opt. Lett. 21, 1591 (1996).

    Article  ADS  Google Scholar 

  9. As suggested by G. I. Opat, J. S. Wark, A. Cimmino, Appl. Phys. B 54, 396 (1992).

    Article  ADS  Google Scholar 

  10. T. M. Roach et al., Phys. Rev. Lett. 75, 629 (1995).

    Article  ADS  Google Scholar 

  11. A. I. Sidorov et al., Quant. Semiclass. Opt. 8, 713 (1996).

    Article  ADS  Google Scholar 

  12. I. G. Hughes, P. A. Barton, T. M. Roach, M. G. Boshier, E. A. Hinds, J. Phys. B 30, 647 (1997).

    Article  ADS  Google Scholar 

  13. I. G. Hughes, P. A. Barton, T. M. Roach, E. A. Hinds, J. Phys. B 30, 2119 (1997).

    Article  ADS  Google Scholar 

  14. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, Sixth Edition 1980) p. 303.

    Google Scholar 

  15. It is worth noting that all the recording media we have studied evolve remarkably little gas.

    Google Scholar 

  16. E. L. Hahn,. Phys. Rev. 80, 580 (1950).

    Article  ADS  MATH  Google Scholar 

  17. G. N. Coverdale, R. W. Chantrell, A. Satoh and R Vietch, J. Appl. Phys. 81, 3818 (1997).

    Article  ADS  Google Scholar 

  18. M. Drndic et al., Appl. Phys. Lett. 72, 2906 (1998); K. S. Johnson et al., Phys. Rev. Lett. 81, 1137 (1998).

    Google Scholar 

  19. H. Wallis, J. Dalibard, C. Cohen-Tannoudji, Appl. Phys. B 54, 407 (1992).

    Article  ADS  Google Scholar 

  20. E. A. Hinds, M. G. Boshier, and I. G. Hughes, Phys. Rev. Lett. 80, 645 (1998).

    Article  ADS  Google Scholar 

  21. P. D. Lett, et al., J. Opt. Soc. Am. B. 6, 2084 (1989).

    Article  ADS  Google Scholar 

  22. B. M. Garraway and. K-A. Suominen, Rep. Prog. Phys. 58, 365 (1995).

    Article  ADS  Google Scholar 

  23. F. Abeelen and B. Verhaar, private communication (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hinds, E.A. (1999). Magnetic Atom Optics. In: Whelan, C.T., Dreizler, R.M., Macek, J.H., Walters, H.R.J. (eds) New Directions in Atomic Physics. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4721-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4721-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7139-7

  • Online ISBN: 978-1-4615-4721-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics