Advertisement

A Quantum Monte Carlo Study of the Exchange-Correlation Hole in Silicon Atom and System-Averaged Correlation Holes of Second Row Atoms

  • Antonio C. Cancio
  • C. Y. Fong
  • J. S. Nelson

Abstract

The variational Monte Carlo method using the correlated estimates technique and the correlated (Slater-Jastrow) wave function to study the exchange-correlation hole, nxcin open shell atoms are discussed in detail. The spin decomposed nxc for the silicon atom and the system-averaged correlation holes for the second row atoms are presented. We find important nonlocal contributions to the opposite spin nxc. The system-averaged correlation holes show approximate scaling behavior with respect to the number of electron pairs and a correlation radius.

Keywords

Wave Function Slater Determinant Opposite Spin Trial Wave Function Variational Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
  2. [2]
    Warren E. Pickett and Jeremy Q. Broughton, Phys. Rev. B48, 14859 (1993-II).Google Scholar
  3. [3]
    R. O. Jones and O. Gunnarson, Rev. Mod. Phys. 61, 689, (1989).CrossRefGoogle Scholar
  4. [4]
    M. Ernzerhof, J. P. Perdew and K. Burke, in “Density Functional Theory”, ed. by R. Nalewajski. Springer-Verlag, Berlin, (1996).Google Scholar
  5. [5]
    S. Fahy, X. W. Wang and Steven G. Louie, Phys. Rev. Lett. 61, 1631 (1988).CrossRefGoogle Scholar
  6. [6]
    Randolph Q. Hood et al., Phys. Rev. Lett. 78, 3350 (1997).CrossRefGoogle Scholar
  7. [7]
    See for example, Peter Fulde, “Electron Correlation in Molecules and Solids” Springer-Verlag, Berlin, (1991).Google Scholar
  8. [8]
    J. C. Kimball, Phys. Rev. A7, 1648 (1973).Google Scholar
  9. [9]
    G. B. Bachelet, D. R. Hamann and M. Schluter, Phys. Rev. B26, 4199 (1982).Google Scholar
  10. [10]
    See W. H. Press et al., in “Numerical Recipes (Fortran Version)”, Cambridge University Press, Cambridge, 523 (1989).Google Scholar
  11. [11]
    D. M. Ceperley and M. H. Kalos in “Monte Carlo Methods in Statistical Physics”,ed. by K. Binder, Springer-Verlag, Berlin, (1979).Present address: School of Physics, Georgia Tech. Atlanta, GA30332, USAGoogle Scholar
  12. [12]
    M. Kalos and P. Whitlock, in “Monte Carlo Method”, vol. 1, Wiley and Sons, New York, 107 (1986).Google Scholar
  13. [13]
    N. Metropolis, et al. J. Chem. Phys. 21, 1087 (1953).CrossRefGoogle Scholar
  14. [14]
    R. Jastrow, Phys. Rev. 98, 1479 (1955).CrossRefGoogle Scholar
  15. [15]
    N. C. Handy, J. Chem. Phys. 58, 279 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Antonio C. Cancio
    • 1
  • C. Y. Fong
    • 1
  • J. S. Nelson
    • 2
  1. 1.Department of PhysicsUniversity of California DavisUSA
  2. 2.Semiconductor Physics DivisionSandia National Laboratories AlbuquerqueUSA

Personalised recommendations