A Quantum Monte Carlo Study of the Exchange-Correlation Hole in Silicon Atom and System-Averaged Correlation Holes of Second Row Atoms

  • Antonio C. Cancio
  • C. Y. Fong
  • J. S. Nelson

Abstract

The variational Monte Carlo method using the correlated estimates technique and the correlated (Slater-Jastrow) wave function to study the exchange-correlation hole, nxcin open shell atoms are discussed in detail. The spin decomposed nxc for the silicon atom and the system-averaged correlation holes for the second row atoms are presented. We find important nonlocal contributions to the opposite spin nxc. The system-averaged correlation holes show approximate scaling behavior with respect to the number of electron pairs and a correlation radius.

Keywords

Magnesium Anisotropy Argon Undersampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
  2. [2]
    Warren E. Pickett and Jeremy Q. Broughton, Phys. Rev. B48, 14859 (1993-II).Google Scholar
  3. [3]
    R. O. Jones and O. Gunnarson, Rev. Mod. Phys. 61, 689, (1989).CrossRefGoogle Scholar
  4. [4]
    M. Ernzerhof, J. P. Perdew and K. Burke, in “Density Functional Theory”, ed. by R. Nalewajski. Springer-Verlag, Berlin, (1996).Google Scholar
  5. [5]
    S. Fahy, X. W. Wang and Steven G. Louie, Phys. Rev. Lett. 61, 1631 (1988).CrossRefGoogle Scholar
  6. [6]
    Randolph Q. Hood et al., Phys. Rev. Lett. 78, 3350 (1997).CrossRefGoogle Scholar
  7. [7]
    See for example, Peter Fulde, “Electron Correlation in Molecules and Solids” Springer-Verlag, Berlin, (1991).Google Scholar
  8. [8]
    J. C. Kimball, Phys. Rev. A7, 1648 (1973).Google Scholar
  9. [9]
    G. B. Bachelet, D. R. Hamann and M. Schluter, Phys. Rev. B26, 4199 (1982).Google Scholar
  10. [10]
    See W. H. Press et al., in “Numerical Recipes (Fortran Version)”, Cambridge University Press, Cambridge, 523 (1989).Google Scholar
  11. [11]
    D. M. Ceperley and M. H. Kalos in “Monte Carlo Methods in Statistical Physics”,ed. by K. Binder, Springer-Verlag, Berlin, (1979).Present address: School of Physics, Georgia Tech. Atlanta, GA30332, USAGoogle Scholar
  12. [12]
    M. Kalos and P. Whitlock, in “Monte Carlo Method”, vol. 1, Wiley and Sons, New York, 107 (1986).Google Scholar
  13. [13]
    N. Metropolis, et al. J. Chem. Phys. 21, 1087 (1953).CrossRefGoogle Scholar
  14. [14]
    R. Jastrow, Phys. Rev. 98, 1479 (1955).CrossRefGoogle Scholar
  15. [15]
    N. C. Handy, J. Chem. Phys. 58, 279 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Antonio C. Cancio
    • 1
  • C. Y. Fong
    • 1
  • J. S. Nelson
    • 2
  1. 1.Department of PhysicsUniversity of California DavisUSA
  2. 2.Semiconductor Physics DivisionSandia National Laboratories AlbuquerqueUSA

Personalised recommendations