Advertisement

Pair Densities, Particle Number Fluctuations, and a Generalized Density Functional Theory

  • P. Ziesche

Abstract

In the theory of atoms, molecules, clusters, and solids the quantum-mechanical many-electron problem is treated with a variety of well-studied and well-tried methods. Methods applicable to finite as well as extended systems are-the wave-function based Hartree-Fock (HF) method with its exchange (X) hole for electrons with parallel spins (and - following from this - its non-local X-potential), but with its complete neglect of the correlation (C) hole for electrons with antiparallel spins,-the density-based density-functional theory (DFT)2 with its local density approximation (LDA) and generalized gradient approximation (GGA)3 of the local XC potential or with its recent optimized effective potential (OEP) method version’, where the XCenergy depends implicitly on the density via orbitals,- the Green function based quasi-particle theory (QPT) with its GW approximation for the non-local and energy dependent self-energy operator,- the wave function based quantum Monte Carlo (QMC) method.

Keywords

Particle Number Quantum Monte Carlo Pair Density Static Structure Factor Cumulant Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Fulde. Electron Correlations in Molecules and Solids, Springer, Berlin (1991, 3rd enlarged ed.1995).Google Scholar
  2. [2]
    Recent books on DFT are D.P. Chong (Ed.). Recent Advances in Density Functional Theory, World Scientific, Singapore (Part I, 1995; Part II, 1997);Google Scholar
  3. J.M. Seminario (Ed.). Recent Developments and Applications of Modern Density Functional Theory, Elsevier, Amsterdam (1996).Google Scholar
  4. H. Eschrig. The Fundamentals of Density Functional Theory, Teubner, Stuttgart (1996).CrossRefGoogle Scholar
  5. [3]
    P. Ziesche, S. Kurth, and J.P. Perdew, Computational Material Science 11:122(1998) and references therein.Google Scholar
  6. [4]
    T. Grabo, T. Kreibich, and E.K.U. Gross, Molecular Engineering 7:27(1997) and references therein.Google Scholar
  7. M. Yu, S. Kalvoda, and M. Dolg, Chem. Phys. 224:121(1997);Google Scholar
  8. S. Kalvoda, M. Doig, H.-J. Flad, and P. Fulde, Phys. Rev. B 57:2127(1998) and references therein.CrossRefGoogle Scholar
  9. [6]
    M. Piris and R. Cruz, Int. J. Quantum Chern. 53:353(1995);CrossRefGoogle Scholar
  10. M. Piris, A. Montero, and N. Cruz, J. Chem. Phys. 107:180(1997);CrossRefGoogle Scholar
  11. M. Piris, J. Math. Chem., in press;Google Scholar
  12. M. Piris, J. Chem. Phys., submitted.Google Scholar
  13. [7]
    A. Gonis, T.C. Schulthess, J. van Ek, and P.E.A. Turchi, Phys. Rev. Lett. 77:2981(1996).Google Scholar
  14. [8]
    A. Gonis, T.C. Schulthess, and P.E.A. Turchi, Phys. Rev. B 56:9335(1997).Google Scholar
  15. [9]
    A. Gonis and T.C. Schulthess.1. Phys.: Condens. Matter 10:3535(1998).Google Scholar
  16. [10]
    P. Ziesche, Phys. Lett. A 190:201(1994).CrossRefGoogle Scholar
  17. [11]
    P. Ziesche, Int. J. Quantum Chern. 60 (Quantum Chem. Syrup. 30):1361[or 149 in some libraries] (1996).Google Scholar
  18. [12]
    In terms of RDMs the situation is slightly different: of course more and more secrets of the electron motion are hidden in the higher-order irreducible parts of the RDMs, the lowest one of which is u2(…) in but for the physical understanding and discussion it is sufficient to know the PD n(1;2) and possibly also the one-DM 71(1,1’) and to resign information contained in the off-diagonal elements of ry2(…) or u2(…) and in all the higher-order RDMs.Google Scholar
  19. [13]
    P. Ziesche, Habilitation Thesis, TU Dresden(1967);Google Scholar
  20. P. Ziesche and V.A. Sagrebnov, JINR P4–8220, Dubna(1974).Google Scholar
  21. [14]
    R. Lenk, Ann. Physik (Leipzig) 19:88(1967).Google Scholar
  22. [15]
    R.F. Bader, Atoms in Molecules, Clarendon, Oxford (1990), p. 332.Google Scholar
  23. [16]
    P. Ziesche, Int. J. Quantum Chem. 56:363(1995);CrossRefGoogle Scholar
  24. P. Gersdorf, W. John, J.P. Perdew, and P. Ziesche, Int. J. Quantum Chem. 61:935(1997);Google Scholar
  25. P. Ziesche, O. Gunnarsson, W. John, and H. Beck, Phys. Rev. B 55:10270(1997);CrossRefGoogle Scholar
  26. P. Ziesche, V.H. Smith, M. Hô, S.P. Rudin, P. Gersdorf, and M. Taut, submitted.Google Scholar
  27. [17]
    W. KohnPhys. Rev. Lett. 76:3168(1996).Google Scholar
  28. [18]
    It should be of interest, to have a better understanding of the relations between nearsightedness, incremental method and Bethe-Goldstone equation.Google Scholar
  29. [19]
    It should be of interest, to compare the different correlation measures: the correlation entropy s of Eq. (2.8), which results from the one-DM, and c = C/N of Eq. (3.14), which results from the PD, and the correlation strength proposed in Ref. 1, which is based on the particle number variance.Google Scholar
  30. [20]
    A.J. Thakkar and V.H. Smith, Chem. Phys. Lett. 42:476(1976).Google Scholar
  31. [21]
    For the uniform electron gas (see e.g. Ref. 22) with n(1; 2) = n2g(r12) the cusp theorem (3.31) means g’(0) = g(0)/aB, an = h2/rne223. In Ref. 24 it is shown, that g(0) not only determines g’(0) but also the large-k behavior of the momentum distribution n(k). Relations between n(k) and g(r) on the basis of the virial theorem are discussed in Ref. 25.Google Scholar
  32. [22]
    P. Ziesche and G. Paasch, Das Elektronengas, in: Ergebnisse in der Elektronentheorie der Metalle, P. Ziesche and G. Lehmann, ed., Akademie-and Springer-Verlag, Berlin (1983), P. 14.CrossRefGoogle Scholar
  33. [23]
    J.C. Kimball, Phys. Rev. A 7:1648(1973).Google Scholar
  34. [24]
    J.C. Kimball, J. Phys. A 8:1513(1975).CrossRefGoogle Scholar
  35. [25]
    W. Macke and P. Ziesche, Ann. Physik (Leipzig) 13:26(1964).Google Scholar
  36. [26]
    N. Watanabe, H. Hayashi, and Y. Udagawa, J. Chem. Phys. 108:4545(1998).Google Scholar
  37. [27]
    J. Wang, A.N. Tripathi, and V.H. Smith, J. Chem. Phys. 101:4842(1994).Google Scholar
  38. [28]
    N. Watanabe, H. Hayaslii, and Y. Udagawa, Bull. Chern. Soc. Japan 70:719(1997).Google Scholar
  39. [29]
    R.S. Barbieri and R.A. Bonham, Phys. Rev. A 44:7361(1991).Google Scholar
  40. [30]
    M. Meyer, T. Müller, and A. Schweig, Chem. Phys. Lett. 236:497(1995).Google Scholar
  41. [31]
    J . Wang, R.O. Esquivel, V.H. Smith, and A.V. Bunge, Phys. Rev. A 51:3812(1995).Google Scholar
  42. [32]
    J. Cioslowski, B.B. Stefanov, A. Tan, and C.J. Umrigar, J. Chem. Phys. 103:6093(1995).Google Scholar
  43. [33]
    J. Wang and V.H. SmithInt. J. Quantum Chem. 49:147(1994).Google Scholar
  44. [34]
    W. Schälke, J.R. Schmitz, H. Schulte-Schrepping, and A. Kaprolat, Phys. Rev. B 52:11721(1995), see also references therein.CrossRefGoogle Scholar
  45. [35]
    G. Calzuola, C. Petrillo, and F. Sacchetti, Phys. Rev. B, submitted.Google Scholar
  46. [36]
    A. Shukla, Phys. Rev. B, submitted.Google Scholar
  47. [37]
    J. F. Dobson, J. Chem. Phys. 94:4328(1991).Google Scholar
  48. [38]
    A. Savin, R. Nesper, S. Wengert, and T.F. Fässler, Angew. Chem. Int. Ed. Engl. 36:1808(1997) and references therein.CrossRefGoogle Scholar
  49. [39]
    M. Mödl, M. Dolg, and H. Stoll, J. Chem. Phys. 105:2353(1996).Google Scholar
  50. [40]
    M. Levy, Proc. Math. Acad. Sci. USA 76:6062(1979); see also S.M. Valono, J. Chem. Phys. 73:1344(1980).Google Scholar
  51. [41]
    The idea to derive from T[n] or T[w] Euler equations is due to M. Levy and D. Edwards.Google Scholar
  52. [42]
    E.R. Davidson. Reduced Density Matrices in Quantum Chemistry, Academic, New York (1976), p. 97.Google Scholar
  53. [43]
    In the wave or second quantization the particle number operator in a fragment X = (12, E) is where 10(1) and ß/i(1) are creation and annihilation operators.Google Scholar
  54. [44]
    Jiahu Wang, PhD Thesis, Queen’s University Kingston (1994) and references therein.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • P. Ziesche
    • 1
  1. 1.Max Planck Institute for the Physics of Complex SystemsDresdenGermany

Personalised recommendations