Hypoxia pp 259-275 | Cite as

Oxygen and Placental Vascular Development

  • John C. P. Kingdom
  • Peter Kaufmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 474)

Abstract

Human embryogenesis takes place in a hypoxic environment because the trophoblast shell excludes entry of maternal blood. The first fetal-placental villi develop as trophoblast sprouts. These are invaded by allantoic mesoderm to form secondary villi and are transformed, by vasculogenesis, into tertiary villi. The placental barrier to maternal blood is gradually breached between 8–12 weeks of gestation, due to invasion of placental-bed uteroplacental spiral arteries by the extravillous trophoblast (EVT). Placental oxygen tension thus rises and a phase of branching angiogenesis continues until 24 weeks. Thereafter a gradual shift takes place favoring non-branching angiogenesis. Gas-exchanging terminal villi thus form which are essential for rapid fetal growth and development of a high-flow, low-resistance fetal-placental circulation.

Inadequate invasion of the uteroplacental spiral arteries by EVT results in placental ischemia and the development of obstetrical complications - preeclampsia and/or intrauterine growth restriction (IUGR). Placental villi often show evidence of continued branching angiogenesis, as is the case with anemic pregnancy, and pregnancy at high altitude. These structural alterations may reflect continued hypoxia-driven activity of vascular endothelial growth factor (VEGF). By contrast, a minority of severe early-onset IUGR pregnancies exhibit reduced fetal-placental blood flow with elongated maldeveloped villous capillaries. Placenta-like growth factor (P1GF) expression is increased while trophoblast proliferation is reduced, suggesting “hyperoxia” in the placental villous tree. IUGR may thus have two phenotypes - a more common hypoxic and a rarer hyperoxic type. While this concept is gaining acceptance, we have no insight as to the initiating mechanism(s).

Key words

embryogenesis vasculogenesis fetal-placental circulation intrauterine growth restriction placenta-like growth factor placenta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmed, A., C. Dunk, D. Kniss, and M. Wilkes. Role of VEGF receptor-1 (Flt-1) in mediating calcium-dependent nitric oxide release and limiting DNA synthesis in human trophoblast cells. Lab Invest 76: 779–791, 1997.PubMedGoogle Scholar
  2. 2.
    Bower, S., S. Bewley, and S. Campbell. Improved prediction of preeclampsia by two-stage screening of uterine arteries using the early diastolic notch and color Doppler imaging. Obstet Gynecol 82: 78–83, 1993.PubMedGoogle Scholar
  3. 3.
    Burton, G.J. and E. Jauniaux. Sonographic, stereological and Doppler flow velocimetric assessments of placental maturity. Br J Obstet Gynaecol 102: 818–825, 1995.PubMedCrossRefGoogle Scholar
  4. 4.
    Burton, G.J., O.S. Reshetnikova, A.P. Milovanov, and O.V. Teleshova. Stereological evaluation of vascular adaptations in human placental villi to differing forms of hypoxic stress. Placenta 17: 49–55, 1996.PubMedCrossRefGoogle Scholar
  5. 5.
    Cacciatore, B., E. Halmesmaki, R. Kaaja, K. Teramo, and O. Ylikorkala. Effects of transdermal nitroglycerin on impedance to flow in the uterine, umbilical, and fetal middle cerebral arteries in pregnancies complicated by preeclampsia and intrauterine growth retardation. Am J Obstet Gynecol 179: 140–145, 1998.PubMedCrossRefGoogle Scholar
  6. 6.
    Cao, Y., H. Chen, L. Zhou, M.K. Chiang, B. Anand-Apte, J.A. Weatherbee, Y. Wang, F. Fang, J.G. Flanagan, and M.L. Tsang. Heterodimers of placenta growth factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR. JBiol Chem 271: 3154–3162, 1996.CrossRefGoogle Scholar
  7. 7.
    Castellucci, M., M. Scheper, I. Scheffen, A. Celona, and P. Kaufmann. The development of the human placental villous tree. Anat Embryo! (Berl) 181: 117–128, 1990.Google Scholar
  8. 8.
    Chang, T.C., S.C. Robson, J.A. Spencer, and S. Gallivan. Identification of fetal growth retardation: comparison of Doppler waveform indices and serial ultrasound measurements of abdominal circumference and fetal weight. Obstet Gynecol 82: 230–236, 1993.PubMedGoogle Scholar
  9. 9.
    Chappell, L. and S. Bewley. Pre-eclamptic toxaemia: the role of uterine artery Doppler. Br J Obstet Gynaecol 105: 379–382, 1998.PubMedCrossRefGoogle Scholar
  10. 10.
    Cheung, C.Y. Vascular endothelial growth factor: possible role in fetal development and placental function. J Soc Gynecol Investig 4: 169–177, 1997.PubMedCrossRefGoogle Scholar
  11. 11.
    Clark, D.E., S.K. Smith, D. Licence, A.L. Evans, and D.S. Charnock-Jones. Comparison of expression patterns for placenta growth factor, vascular endothelial growth factor (VEGF), VEGF-B and VEGF-C in the human placenta throughout gestation. J Endocrinol 159: 459–467, 1998.PubMedCrossRefGoogle Scholar
  12. 12.
    Cooper, J.C., A.M. Sharkey, D.S. Charnock-Jones, C.R. Palmer, and S.K. Smith. VEGF mRNA levels in placentae from pregnancies complicated by preeclampsia [see comments]. Br J Obstet Gynaecol 103: 1191–1196, 1996.PubMedCrossRefGoogle Scholar
  13. 13.
    Cross, J.C. Formation of the placenta and extraembryonic membranes [In Process Citation]. Ann N YAcad Sci 857: 23–32, 1998.CrossRefGoogle Scholar
  14. 14.
    Cross, J.C., Z. Werb, and S.J. Fisher. Implantation and the placenta: key pieces of the development puzzle. Science 266: 1508–1518, 1994.PubMedCrossRefGoogle Scholar
  15. 15.
    Evans, P.W., T. Wheeler, F.W. Anthony, and C. Osmond. A longitudinal study of maternal serum vascular endothelial growth factor in early pregnancy. Hum Reprod 13: 1057–1062, 1998.PubMedCrossRefGoogle Scholar
  16. 16.
    Fisk, N.M., N. MacLachlan, C. Ellis, Y. Tannirandorn, H.M. Tonge, and C.H. Rodeck. Absent end-diastolic flow in first trimester umbilical artery [letter]. Lancet 2: 1256–1257, 1988.PubMedCrossRefGoogle Scholar
  17. 17.
    Fox, H. Effect of hypoxia on trophoblast in organ culture. A morphologic and autoradiographic study. Am JObstet Gynecol 107: 1058–1064, 1970.Google Scholar
  18. 18.
    Francis, S.T., K.R. Duncan, R.J. Moore, P.N. Baker, I.R. Johnson, and P.A. Gowland. Non-invasive mapping of placental perfusion. Lancet 351: 1397–1399, 1998.PubMedCrossRefGoogle Scholar
  19. 19.
    Grannum, P.A., R.L. Berkowitz, and J.C. Hobbins. The ultrasonic changes in the maturing placenta and their relation to fetal pulmonic maturity. Am J Obstet Gynecol 133: 915–922, 1979.PubMedGoogle Scholar
  20. 20.
    Hendricks, S.K., T.K. Sorensen, K.Y. Wang, J.M. Bushnell, E.M. Seguin, and R.W. Zingheim. Doppler umbilical artery waveform indices--normal values from fourteen to forty-two weeks. Am J Obstet Gynecol 161: 761–765, 1989.PubMedGoogle Scholar
  21. 21.
    Hitschold, T.P. Doppler flow velocity waveforms of the umbilical arteries correlate with intravillous blood volume. Am J Obstet Gynecol 179: 540–543, 1998.CrossRefGoogle Scholar
  22. 22.
    Hunter, P.J., B.J. Swanson, M.A. Haendel, G.E. Lyons, and J.C. Cross. Mrj encodes a DnaJ-related co-chaperone that is essential for murine placental development. Development 126: 1247–1258, 1999.PubMedGoogle Scholar
  23. 23.
    Huppertz, B., H.G. Frank, J.C. Kingdom, F. Reister, and P. Kaufmann. Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem Cell Biol 110: 495–508, 1998.PubMedCrossRefGoogle Scholar
  24. 24.
    Jackson, M.R., E.W. Carney, S.J. Lye, and J.W. Ritchie. Localization of two angiogenic growth factors (PDECGF and VEGF) in human placentae throughout gestation. Placenta 15: 341–353, 1994.PubMedCrossRefGoogle Scholar
  25. 25.
    Jackson, M.R., T.M. Mayhew, and P.A. Boyd. Quantitative description of the elaboration and maturation of villi from 10 weeks of gestation to term. Placenta 13: 357–370, 1992.PubMedCrossRefGoogle Scholar
  26. 26.
    Jackson, M.R., T.M. Mayhew, and J.D. Haas. On the factors which contribute to thinning of the villous membrane in human placentae at high altitude. I. Thinning and regional variation in thickness of trophoblast. Placenta 9: 1–8, 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    Jackson, M.R., A.J. Walsh, R.J. Morrow, J.B. Mullen, S.J. Lye, and J.W. Ritchie. Reduced placental villous tree elaboration in small-for-gestational-age pregnancies: relationship with umbilical artery Doppler waveforms. Am J Obstet Gynecol 172: 518–525, 1995.PubMedCrossRefGoogle Scholar
  28. 28.
    Jaffe, R., E. Jauniaux, and J. Hustin. Maternal circulation in the first-trimester human placenta--myth or reality? Am J Obstet Gynecol 176: 695–705, 1997.PubMedCrossRefGoogle Scholar
  29. 29.
    Johanson, R., S.W. Lindow, C. van der Elst, Z. Jaquire, S. van der Westhuizen, and A. Tucker. A prospective randomised comparison of the effect of continuous 02 therapy and bedrest on fetuses with absent end-diastolic flow on umbilical artery Doppler waveform analysis. Br J Obstet Gynaecol 102: 662–665, 1995.PubMedCrossRefGoogle Scholar
  30. 30.
    Kadyrov, M., G. Kosanke, J. Kingdom, and P. Kaufmann. Increased fetoplacental angiogenesis during first trimester in anaemic women. Lancet 352: 1747–1749, 1998.PubMedCrossRefGoogle Scholar
  31. 31.
    Karsdorp, V.H., J.M. van Vugt, H.P. van Geijn, P.J. Kostense, D. Arduini, N. Montenegro, and T. Todros. Clinical significance of absent or reversed end diastolic velocity waveforms in umbilical artery. Lancet 344: 1664–1668, 1994.PubMedCrossRefGoogle Scholar
  32. 32.
    Khaliq, A., C. Dunk, J. Jiang, M. Shams, X. Li, C. Acevedo, H. Weich, M. Whittle, and A. Ahmed. Hypoxia Down-Regulates Placenta growth factor whereas Fetal Growth Restriction Up-Regulates Placenta growth factor Expresion: Molecular Evidence for “Placental Hyperoxia” in Intrauterine Growth Restriction. Laboratory Investigation 1999.(In Press)Google Scholar
  33. 33.
    Khong, T.Y., F. De Wolf, W.B. Robertson, and I. Brosens. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-forgestational age infants. Br J Obstet Gynaecol 93: 1049–1059, 1986.PubMedCrossRefGoogle Scholar
  34. 34.
    Kingdom, J. Adriana and Luisa Castellucci Award Lecture 1997. Placental pathology in obstetrics: adaptation or failure of the villous tree? Placenta 19: 347–351, 1998.CrossRefGoogle Scholar
  35. 35.
    Kingdom, J.C., S.J. Burrell, and P. Kaufmann. Pathology and clinical implications of abnormal umbilical artery Doppler waveforms. Ultrasound Obstet Gynecol 9: 271–286, 1997.PubMedCrossRefGoogle Scholar
  36. 36.
    Kingdom, J.C. and P. Kaufmann. Oxygen and placental villous development: origins of fetal hypoxia. Placenta 18: 613–621, 1997.PubMedCrossRefGoogle Scholar
  37. 37.
    Kingdom, J.C., C.H. Rodeck, and P. Kaufmann. Umbilical artery Doppler--more harm than good? Br J Obstet Gynaecol 104: 393–396, 1997.PubMedCrossRefGoogle Scholar
  38. 38.
    Krebs, C., L.M. Macara, R. Leiser, A.W. Bowman, I.A. Greer, and J.C. Kingdom. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol 175: 1534–1542, 1996.PubMedCrossRefGoogle Scholar
  39. 39.
    Kurjak, A. and S. Kupesic. Parallel Doppler assessment of yolk sac and intervillous circulation in normal pregnancy and missed abortion [In Process Citation]. Placenta 19: 619–623,1998.PubMedCrossRefGoogle Scholar
  40. 40.
    Kurz, H., J. Wilting, K. Sandau, and B. Christ. Automated evaluation of angiogenic effects mediated by VEGF and P1GF homo-and heterodimers. Microvasc Res 55: 92–102, 1998.PubMedCrossRefGoogle Scholar
  41. 41.
    Luckhardt, M., R. Leiser, J. Kingdom, A. Malek, R. Sager, C. Kaisig, and H. Schneider. Effect of physiologic perfusion-fixation on the morphometrically evaluated dimensions of the term placental cotyledon. JSoc Gynecol Investig 3: 166–171, 1996.CrossRefGoogle Scholar
  42. 42.
    Lyall, F., A. Young, F. Boswell, J.C. Kingdom, and I.A. Greer. Placental expression of vascular endothelial growth factor in placentae from pregnancies complicated by pre-eclampsia and intrauterine growth restriction does not support placental hypoxia at delivery. Placenta 18: 269–276, 1997.PubMedCrossRefGoogle Scholar
  43. 43.
    Macara, L., J.C. Kingdom, P. Kaufmann, G. Kohnen, J. Hair, I.A. More, F. Lyall, and I.A. Greer. Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta 17: 37–48, 1996.PubMedCrossRefGoogle Scholar
  44. 44.
    Maglione, D., V. Guerriero, G. Viglietto, P. Delli-Bovi, and M.G. Persico. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 88: 9267–9271, 1991.PubMedCrossRefGoogle Scholar
  45. 45.
    Mason, G.C., R.J. Lilford, J. Porter, E. Nelson, and S. Tyrell. Randomised comparison of routine versus highly selective use of Doppler ultrasound in low risk pregnancies. Br J Obstet Gynaecol 100: 130–133, 1993.PubMedCrossRefGoogle Scholar
  46. 46.
    Mayhew, T.M., M.R. Jackson, and P.A. Boyd. Changes in oxygen diffusive conductances of human placentae during gestation (10–41 weeks) are commensurate with the gain in fetal weight. Placenta 14: 51–61, 1993.PubMedCrossRefGoogle Scholar
  47. 47.
    Morrow, R.J., S.L. Adamson, S.B. Bull, and J.W. Ritchie. Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am J Obstet Gynecol 161: 1055–1060,1989.PubMedGoogle Scholar
  48. 48.
    Nylund, L., N.O. Lunell, R. Lewander, and B. Sarby. Uteroplacental blood flow index in intrauterine growth retardation of fetal or maternal origin. Br J Obstet Gynaecol 90: 16–20, 1983.PubMedCrossRefGoogle Scholar
  49. 49.
    Ochi, H., K. Matsubara, Y. Kusanagi, H. Taniguchi, and M. Ito. Significance of a diastolic notch in the uterine artery flow velocity waveform induced by uterine embolisation in the pregnant ewe. Br J Obstet Gynaecol 105: 1118–1121, 1998.PubMedCrossRefGoogle Scholar
  50. 50.
    Olofsson, P., R.N. Laurini, and K. Marsal. A high uterine artery pulsatility index reflects a defective development of placental bed spiral arteries in pregnancies complicated by hypertension and fetal growth retardation. Eur J Obstet Gynecol Reprod Biol 49: 161–168, 1993.PubMedCrossRefGoogle Scholar
  51. 51.
    Ozaki, H., A.Y. Yu, N. Della, K. Ozaki, J.D. Luna, H. Yamada, S.F. Hackett, N. Okamoto, D.J. Zack, G.L. Semenza, and P.A. Campochiaro. Hypoxia inducible factor-1 alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 40: 182–189, 1999.PubMedGoogle Scholar
  52. 52.
    Pardi, G., I. Cetin, A.M. Marconi, P. Bozzetti, M. Buscaglia, E.L. Makowski, and F.C. Battaglia. Venous drainage of the human uterus: respiratory gas studies in normal and fetal growth-retarded pregnancies. Am J Obstet Gynecol 166: 699–706, 1992.PubMedGoogle Scholar
  53. 53.
    Pardi, G., I. Cetin, A.M. Marconi, A. Lanfranchi, P. Bozzetti, E. Ferrazzi, M. Buscaglia, and F.C. Battaglia. Diagnostic value of blood sampling in fetuses with growth retardation [see comments]. N Engl J Med 328: 692–696, 1993.PubMedCrossRefGoogle Scholar
  54. 54.
    Poston, L. Nitrovasodilators--will they be useful in lowering uterine artery resistance in pre-eclampsia and intrauterine growth restriction? [comment]. Ultrasound Obstet Gynecol 11:92–93, 1998.PubMedCrossRefGoogle Scholar
  55. 55.
    Proud, J. and A.M. Grant. Third trimester placental grading by ultrasonography as a test of fetal wellbeing. Br Med J (Clin Res Ed) 294: 1641–1644, 1987.CrossRefGoogle Scholar
  56. 56.
    Riley, P., L. Anson-Cartwright, and J.C. Cross. The Handl bHLH transcription factor is essential for placentation and cardiac morphogenesis. Nat Genet 18: 271–275, 1998.PubMedCrossRefGoogle Scholar
  57. 57.
    Risau, W. Mechanisms of angiogenesis. Nature 386: 671–674, 1999.Google Scholar
  58. 58.
    Rodesch, F., P. Simon, C. Donner, and E. Jauniaux. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol 80: 283–285, 1992.PubMedGoogle Scholar
  59. 59.
    Seligman, S.P., T. Nishiwaki, S.S. Kadner, J. Dancis, and T.H. Finlay. Hypoxia stimulates ecNOS mRNA expression by differentiated human trophoblasts. Ann N YAcad Sci 828: 180–187, 1997.CrossRefGoogle Scholar
  60. 60.
    Taylor, C.M., H. Stevens, F.W. Anthony, and T. Wheeler. Influence of hypoxia on vascular endothelial growth factor and chorionic gonadotrophin production in the trophoblast-derived cell lines: JEG, JAr and Be Wo. Placenta 18: 451–458, 1997.PubMedCrossRefGoogle Scholar
  61. 61.
    Valensise, H. Uterine artery Doppler velocimetry as a screening test: where we are and where we go [editorial]. Ultrasound Obstet Gynecol 12: 81–83, 1998.PubMedCrossRefGoogle Scholar
  62. 62.
    Ziche, M., D. Maglione, D. Ribatti, L. Morbidelli, C.T. Lago, M. Battisti, I. Paoletti, A. Barra, M. Tucci, G. Parise, V. Vincenti, H.J. Granger, G. Viglietto, and M.G. Persico. Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76: 517–531, 1997.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • John C. P. Kingdom
    • 1
    • 2
  • Peter Kaufmann
    • 1
    • 2
  1. 1.Department of Obstetrics & GynecologyUniversity of Toronto and Maternal-Fetal Medicine DivisionTorontoCanada
  2. 2.Department of AnatomyUniversity of TechnologyAachenGermany

Personalised recommendations