Mixing pp 207-228 | Cite as

Dynamics of Lagrangian Tracers in Barotropic Turbulence

  • A. Provenzale
  • A. Babiano
  • A. Zanella
Part of the NATO ASI Series book series (NSSB, volume 373)


We discuss the dynamics of passively advected tracers in barotropic turbulence. After introducing the relevant fluid dynamical equations, we consider (a) the properties of Lagrangian advection inside coherent vortices; (b) the presence of anomalous dispersion laws generated by the complex structure of geostrophic turbulence; and (c) the dynamics of non neutrally-buoyant particles.


Vortex Core Vorticity Field Vortex Edge Coherent Vortex Passive Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (The MIT Press, Cambridge, 1971).Google Scholar
  2. [2]
    A. Griffa, in Stochastic Modelling in Physical Oceanography, R. Adler, P. Muller, and B. Rozovsky eds. (Birkhauser, Boston, 1996).Google Scholar
  3. [3]
    J.M. Ottino, The Kinematic of Mixing: Stretching, Chaos, and Transport (Cambridge University Press, Cambridge, 1989).Google Scholar
  4. [4]
    A. Crisanti, M. Falcioni, G. Paladin, and A. Vulpiani, Riv. Nuovo Cimento 14, 1 (1991); A. Crisanti, M. Falcioni, A. Provenzale, P. Tanga, and A. Vulpiani, Phys. Fluids 4, 1805 (1992).MathSciNetGoogle Scholar
  5. [5]
    J.B. Weiss and E. Knobloch, Phys. Rev. A 40, 2579 (1989).ADSCrossRefGoogle Scholar
  6. [6]
    T.H. Solomon and J.P. Gollub, Phys. Rev. A 38, 6280 (1988).ADSCrossRefGoogle Scholar
  7. [7]
    D. del Castillo Negrete and P.J. Morrison Phys. Fluids 5, 948 (1992).Google Scholar
  8. [8]
    R.M. Samelson, in Stochastic Modelling in Physical Oceanography, R. Adler, P. Muller, and B. Rozovsky eds. (Birkhauser, Boston, 1996).Google Scholar
  9. [9]
    S. Wiggins, Chaotic Transport in Dynamical Systems (Springer, New York, 1992).zbMATHGoogle Scholar
  10. [10]
    J. Pedlosky, Geophysical Fluid Dynamics (Springer, New York, 1987).zbMATHCrossRefGoogle Scholar
  11. [11]
    J. Pedlosky, Ocean Circulation Theory (Springer, Berlin, 1996).Google Scholar
  12. [12]
    M. Ghil and S. Childress, Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics (Springer, New York, 1987).zbMATHCrossRefGoogle Scholar
  13. [13]
    D.J. Tritton, Physical Fluid Dynamics (Clarendon Press, Oxford, 1988).Google Scholar
  14. [14]
    J.C. McWilliams, J. Fluid Mech. 219 361 (1990).ADSCrossRefGoogle Scholar
  15. [15]
    V.D. Larichev and J.C. McWilliams, Phys. Fluids A 3, 938 (1991).ADSCrossRefGoogle Scholar
  16. [16]
    A. Babiano, C. Basdevant, B. Legras, and R. Sadourny, J. Fluid Mech. 183, 379 (1987).ADSCrossRefGoogle Scholar
  17. [17]
    A. Babiano, C. Basdevant, P. Le Roy, and R. Sadourny, J. Fluid Mech. 214, 535 (1990).ADSzbMATHCrossRefGoogle Scholar
  18. [18]
    D. Elhmaidi, A. Provenzale, and A. Babiano, J. Fluid Mech. 257, 533 (1993).ADSzbMATHCrossRefGoogle Scholar
  19. [19]
    A. Okubo, Deep-Sea Res. 17, 445 (1970).Google Scholar
  20. [20]
    J. Weiss, Physica D 48, 273 (1991).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. [21]
    M. Larcheveque, C. R. Acad. sci. Paris, Series II, 311, 33 (1990).MathSciNetADSzbMATHGoogle Scholar
  22. [22]
    C. Basdevant and T. Philipovitch, Physica D 73, 17 (1994).MathSciNetADSzbMATHCrossRefGoogle Scholar
  23. [23]
    A. Provenzale, A. Babiano, and B. Villone, Chaos, Solitons & Fractals 5, 2055 (1995).ADSCrossRefGoogle Scholar
  24. [24]
    B.L. Hua and P. Klein, “An exact criterion for the stirring properties of nearly two-dimensional turbulence”, preprint 1997.Google Scholar
  25. [25]
    A. Babiano, G. Boffetta, A. Provenzale, and A. Vulpiani Phys. Fluids 6, 2465 (1994).MathSciNetADSzbMATHCrossRefGoogle Scholar
  26. [26]
    F. Paparella, A. Babiano, C. Basdevant, A. Provenzale, and P. Tanga, J. Geo-phys. Res. 102, 6765 (1997).ADSCrossRefGoogle Scholar
  27. [27]
    A.H. Nielsen, J.J. Rasmussen, and M.R. Schmidt, “Vortex merging and corresponding energy cascade in two-dimensional turbulence”, preprint 1997.Google Scholar
  28. [28]
    A. Provenzale, A.R. Osborne, A.D. Kirwan, and L. Bergamasco, in Nonlinear Topics in Ocean Physics, Proceedings of the CIX Course of the Internation School of Physics “E. Fermi”, Varenna 1988, A. R. Osborne Ed. (North-Holland, Amsterdam, 1991).Google Scholar
  29. [29]
    B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).Google Scholar
  30. [30]
    J.A. Viecelli, Phys. Fluids A 2, 2036 (1990); J.B. Weiss, A. Provenzale, and J.C. McWilliams, Phys. Fluids A 10, 1929 (1998).MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. [31]
    V. Rupolo, B.L. Hua, A. Provenzale, and V. Artale, J. Physical Ocean. 26, 1591 (1996).ADSCrossRefGoogle Scholar
  32. [32]
    M.R. Maxey, and J.J. Riley, Phys. Fluids 26, 883 (1983).ADSzbMATHCrossRefGoogle Scholar
  33. [33]
    M.R. Maxey, Phys. Fluids 30, 1915 (1987).ADSCrossRefGoogle Scholar
  34. [34]
    P. Tanga and A. Provenzale, Physica D 76, 202 (1994).ADSCrossRefGoogle Scholar
  35. [35]
    A. Provenzale, A. Babiano, O. Piro, and P. Tanga, “Dynamics of passive impurities in 2D turbulence”, preprint 1997.Google Scholar
  36. [36]
    P. Tanga, A. Babiano, B. Dubrulle, and A. Provenzale ICARUS 121, 158 (1996).ADSCrossRefGoogle Scholar
  37. [37]
    P. Barge and J. Sommeria, Astron. & Astrophys. 295, LI (1995).Google Scholar
  38. [38]
    F.C. Adams and R. Watkins, Astrophys. J. 451, 314 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • A. Provenzale
    • 1
  • A. Babiano
    • 2
  • A. Zanella
    • 1
  1. 1.Istituto di CosmogeofisicaTorinoItaly
  2. 2.Laboratoire de Météorologie Dynamique de l’Ecole Normale SupérieureParis Cedex 05France

Personalised recommendations