Mixing pp 297-303 | Cite as

Dispersion at Large Péclet Number

  • Yves Pomeau
Part of the NATO ASI Series book series (NSSB, volume 373)


This is a review of results on the dispersion at large Péclet number in flows with a stationary structure. Therein, the molecular diffusion acts like a singular perturbation: although small, in the long run it makes its effects felt at order one. The two basic situations I will consider are: 1) dispersion in spatially periodic parallel rolls; 2) the settling of small particles in periodic rolls.


Molecular Diffusion Unstable Manifold Flow Line Peclet Number Bottom Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. de Sèze and Y. Pomeau, J. Physique (Paris) C 5, 95 (1978).Google Scholar
  2. [2]
    Y. Pomeau, C.R. Acad. Sc. Paris, 301, 1323 (1985).zbMATHGoogle Scholar
  3. [3]
    W. R, Young, A. Pumir, and Y. Pomeau, Phys. Fluids A 1, 462 (1989).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. [4]
    B. Shraiman, Phys. Rev. A 36, 261 (1987).ADSCrossRefGoogle Scholar
  5. [5]
    M. N. Rosenbluth, H.L. Berck, I. Doxas, and W. Horton, Phys. Fluids 30, 2636 (1987).ADSzbMATHCrossRefGoogle Scholar
  6. [6]
    E. Guyon, J.P. Hulin, C. Baudet and Y. Pomeau, Nucl. Phys. B 2, 271 (1987).CrossRefGoogle Scholar
  7. [7]
    B. Simon and Y. Pomeau, Phys. Fluids A 3, 380 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Yves Pomeau
    • 1
    • 2
  1. 1.Laboratoire de Physique Statistique de l’Ecole Normale SupérieureParis Cedex 05France
  2. 2.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations