Skip to main content

Molecular Controls for Isoflavonoid Biosynthesis in Relation to Plant and Human Health

  • Chapter
Phytochemicals in Human Health Protection, Nutrition, and Plant Defense

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 33))

  • 649 Accesses

Abstract

Isoflavonoids function in plant-microbe interactions as antimicrobial phy-toalexins and regulators of bacterial nodulation genes,1–3 and dietary isoflavones have been ascribed cancer chemopreventive activity in humans.4 Many of the genes encoding enzymes for the elaboration of isoflavonoids from phenyl-propanoid precursors have been isolated. The reactions catalyzed by isoflavone synthase and isoflavone O-methyltransferase are critical for the formation of both isoflavonoid defense compounds and cancer chemopreventive compounds in alfalfa. Cloning and manipulating the genes encoding these enzymes provides a means to develop novel transgenic plants with improved disease resistance and, perhaps, added health benefits for humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. DIXON, R.A., HARRISON, M.J. 1990. Activation, structure and organization of genes involved in microbial defense in plants. Adv. Genet. 28: 165–234.

    Article  PubMed  CAS  Google Scholar 

  2. DIXON, R.A., PAIVA, N.L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085–1097.

    PubMed  CAS  Google Scholar 

  3. REDMOND, J.W., BATLEY, M., DJORDJEVIC, M.A., INNES, R.W., KUEMPEL, P.L., ROLFE, B.G. 1986. Flavones induce expression of nodulation genes in Rhizobium. Nature 323: 632–636.

    Article  CAS  Google Scholar 

  4. COWARD, L., BARNES, N.C., SETCHELL, K.D.R., BARNES, S. 1993. Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 41: 1961–1967.

    Article  CAS  Google Scholar 

  5. TAHARA, S., IBRAHIM, R.K. 1995. Prenylated isoflavonoids—an update. Phytochemistry 38: 1073–1094.

    Article  CAS  Google Scholar 

  6. LEE, S.-J., WOOD, A.R., MAIER, C.G.-A., DICON, R.A., MABRY, T.J. 1998. Prenylated flavonoids from Madura pomifera. Phytochemistry, in press:

    Google Scholar 

  7. INGHAM, J.L., TAHARA, S., HARBORNE, J.B. 1983. Fungitoxic isoflavones from Lupinus albus and other Lupinus species. Z. Naturforsch. 38c: 194–200.

    CAS  Google Scholar 

  8. VANETTEN, H., MANSFIELD, J.W, BAILEY, J.A., FARMER, E.E. 1994. Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 6: 1191–1192.

    PubMed  CAS  Google Scholar 

  9. DICON, R.A. 1986. The phytoalexin response: elicitation, signalling and the control of host gene expression. Biol. Rev. 61: 239–291.

    Article  Google Scholar 

  10. VANETTEN, H.D., MATTHEWS, D.E., MATTHEWS, P.S. 1989. Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu. Rev. Phytopathol. 27: 143–164.

    Article  PubMed  CAS  Google Scholar 

  11. BHATTACHARYYA, M.K., WARD, E.W.B. 1987. Temperature-induced susceptibility of soybeans to Phytophthora megasperma f.sp. glycinea: phenylalanine ammonia-lyase and glyceollin in the host; growth and glyceollin I sensitivity of the pathogen. Physiol. Mol. Plant Pathol. 31: 407–119.

    Article  CAS  Google Scholar 

  12. KISTLER, H.C., VANETTEN, H.D. 1984. Regulation of pisatin demethylation in Nectria haematococca and its influence on pisatin tolerance and virulence. J. Gen. Microbiol. 130: 2605–2613.

    CAS  Google Scholar 

  13. GLAZEBROOK, J., AUSUBEL, F.M. 1994. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91: 8955–8959.

    Article  PubMed  CAS  Google Scholar 

  14. MORRIS, P.E, WARD, E.W.B. 1992. Chemoattraction of zoospores of the soybean pathogen, Phytophthora sojae by isoflavones. Physiol. Mol. Plant Pathol. 40: 17–22.

    Article  CAS  Google Scholar 

  15. RUAN, Y., KOTRAIAH, V., STRANEY, D.C. 1995. Flavonoids stimulate spore germination in Fusarium solani pathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. Mol. Plant-Microbe Interact. 8: 929–938.

    Article  CAS  Google Scholar 

  16. DÉNARIÉ, J., DEBELLÉ, F., PROMÉ, J.-C. 1996. Rhizobium lipo-chitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem. 65: 503–535.

    Article  PubMed  Google Scholar 

  17. PETERS, N.K., FROST, J.W., LONG, S.R. 1986. A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233: 977–980.

    Article  PubMed  CAS  Google Scholar 

  18. KOSSLAK, R.M., BOOKLAND, R., BARKEI, J., PAAREN, H.E., APPLEBAUM, E.R. 1987. Induction of Bradyrhizobiwn japonicum common nod genes by isoflavones isolated from Glycine max. Proc. Natl. Acad. Sci. USA 84: 7428–7432.

    Article  PubMed  CAS  Google Scholar 

  19. ZHANG, F., SMITH, D.L. 1996. Genistein accumulation in soybean (Glycine max [L.] Merr.) root systems under suboptimal root zone temperatures. J. Exp. Bot. 47: 785–792.

    Article  CAS  Google Scholar 

  20. SHUTT, D.A. 1976. The effects of plant oestrogens on animal reproduction. Endeavour 75: 110–113.

    Article  Google Scholar 

  21. GILDERSLEEVE, R.R., SMITH, G.R., PEMBERTON, I.J., GUILBERT, C.L. 1991. Detection of isoflavone in seedling subterranean clover. Crop Sci. 31: 889–892.

    Article  CAS  Google Scholar 

  22. LEOPOLD, A.S., ERWIN, M., OH, J., BROWNING, B. 1976. Phytoestrogens: adverse effects on reproduction in California quail. Science 191: 98–100.

    Article  PubMed  CAS  Google Scholar 

  23. MARTIN, M.E., HAOURIGUI, M., PELISSERO, C., BENASSAYAG, C., NUNEZ, E.A. 1996. Interactions between phytoestrogens and human sex steroid binding protein. Life Sci. 58: 429–436.

    Article  PubMed  CAS  Google Scholar 

  24. WANG, W., TANAKA, Y., HAN, Z., HIGUCHI, C.M. 1995. Proliferative response of mammary glandular tissue to formononetin. Nutr. Cancer 23: 131–140.

    Article  PubMed  CAS  Google Scholar 

  25. SETCHELL, K.D.R., BORRIELLO, S.P., HULME, P., KIRK, D.N., AXELSON, M. 1984. Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am. J. Clin. Nutr. 40: 569–578.

    PubMed  CAS  Google Scholar 

  26. MAIER, C.G.A., CHAPMAN, K.D., SMITH, D.W. 1995. Differential estrogenic activities of male and female plant extracts from two dioecious species. Plant Sci. 109: 31–43.

    Article  CAS  Google Scholar 

  27. LEE, S.-J., CHUNG, H.-Y., MAIER, C.G.-A., WOOD, A.R., DICON, R.A., MABRY, T.J. 1998. Estrogenic flavonoids from Artemesia vulgaris L. J. Agri. Food. Chem. 46: 3325–3329.

    Article  CAS  Google Scholar 

  28. ADLERCREUTZ, H., HONJO, H., HIGASHI, A., FOTSIS, T, HÄMÄLLÄINEN, E., HASEGAWA, T., OKADA, H. 1991. Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. Am. J. Clin. Nutr. 54: 1093–1100.

    PubMed  CAS  Google Scholar 

  29. LEE, H.P., GOURLEY, L., DUFFY, S.W., ESTEVE, J., LEE, J., DAY, N.E. 1991. Dietary effects on breast-cancer risk in Singapore. Lancet 337: 1197–1200.

    Article  PubMed  CAS  Google Scholar 

  30. BARNES, S., GRUBBS, C., SETCHELL, K.D.R., CARLSON, J. 1990. Soybeans inhibit mammary tumors in models of breast cancer, pp. 239–253 in Mutagens and Carcinogens in the Diet (M.W Pariza, ed.) Wiley-Liss, Inc, New York.

    Google Scholar 

  31. LAMARTINIERE, C.A., MOORE, J., HOLLAND, M., BARNES, S. 1995. Neonatal genistein chemoprevents mammary cancer. Proc. Soc. Exp. Biol. Med. 208: 120–123.

    PubMed  CAS  Google Scholar 

  32. YANAGIHARA, K., ITO, A., TOGE, T., NUMOTO, M. 1993. Antiproliferative effects of isoflavones on human cancer cell lines established from the gastrointestinal tract. Cancer Res. 53: 5815–5821.

    PubMed  CAS  Google Scholar 

  33. CASSIDY, A., BINGHAM, S., SETCHELL, K.D. 1994. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am. J. Clin. Nutr. 60: 333–340.

    PubMed  CAS  Google Scholar 

  34. FRANKE, A.A., FRANKE, L.J., FRANKE, C., WANG, W, SHI, C.Y. 1998. HPLC analysis of isoflavonoids and other phenolic agents from foods and from human fluids. Proc. Soc. Exp. Biol. Med. 217: 263–288.

    PubMed  CAS  Google Scholar 

  35. AKIYAMA, T., ISHIDA, J., NAKAGAWA, S., OGAWARA, H., WATANABE, S., ITOH, N., SHIBUYA, M., FUKAMI, Y. 1987. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 262: 5592–5595.

    PubMed  CAS  Google Scholar 

  36. TAKANO, T., TAKADA, K., TADA, H., NISHIYAMA, S., AMINO, N. 1993. Genistein, a tyrosine kinase inhibitor, blocks the cell cycle progression but not Ca2+ influx induced by BAY K8644 in FRTL-5 cells. Biochem. Biophys. Res. Commun. 190: 801–807.

    Article  PubMed  CAS  Google Scholar 

  37. HUANG, J., NASR, M., KIM, Y., MATTHEWS, H.R. 1992. Genistein inhibits protein histidine kinase. J. Biol. Chem. 267: 15511–15515.

    PubMed  CAS  Google Scholar 

  38. UCHUN, F.M., EVANS, W.E., FORSYTH, C.J., WADDICK, K.G., AHLGREN, L.T., CHELSTROM, L.M., BURKHARDT, A., BOLEN, J., MYERS, D.E. 1995. Biotherapy of B-cell precursor leukemia by targeting genistein to CD19-associated tyrosine kinases. Science 267: 886–891.

    Article  Google Scholar 

  39. ADLERCREUTZ, H., HOCKERSTEDT, K., BLOIGU, S., HAMALAINEN, E., FOTSIS, T., OLLUS, A. 1987. Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens and sex hormone binding globulin (SHBG). J. Steroid Biochem. 27: 1135–1144.

    Article  PubMed  CAS  Google Scholar 

  40. MESSINA, M.J., PERSKY, V., SETCHELL, K.D.R., BARNES, S. 1994. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 21: 113–131.

    Article  PubMed  CAS  Google Scholar 

  41. KNIGHT, D.C., EDEN, J.A. 1996. A review of the clinical effects of phytoestrogens. Obst. Gynecol. 87: 897–904.

    CAS  Google Scholar 

  42. WISEMAN, H. 1996. Role of dietary phyto-estrogens in the protection against cancer and heart disease. Biochem. Soc. Trans. 24: 795–800.

    PubMed  CAS  Google Scholar 

  43. NIESBACH-KLÖSGEN, U., BARZEN, E., BERHNARDT, J., ROHDE, W., SCHWARZSOMMER, Z., REIF, H.J., WIENAND, U., SAEDLER, H. 1987. Chalcone synthase genes in plants: a tool to study evolutionary relationships. J. Mol. Evol. 26: 213–225.

    Article  Google Scholar 

  44. AKADA, S., DUBE, S.K. 1995. Organization of soybean chalcone synthase gene clusters and characterization of a new member of the family. Plant Mol. Biol. 29: 189–199.

    Article  PubMed  CAS  Google Scholar 

  45. AN, C., ICHINOSE, Y., YAMADA, T., TANAKA, Y., SHIRAISHI, T., OKU, H. 1993. Organization of the genes encoding chalcone synthase in Pisum sativum. Plant Mol. Biol. 21: 789–803.

    Article  PubMed  CAS  Google Scholar 

  46. ARIOLI, T., HOWLES, P.A., WEINMAN, J.J., ROLFE, B.G. 1994. In Trifolium subterraneum, chalcone synthase is encoded by a multigene family. Gene 138: 79–86.

    Google Scholar 

  47. JUNGHANS, H., DALKIN, K., DIXON, R.A. 1993. Stress responses in alfalfa (Medicago sativa L.) XV. Characterization and expression patterns of members of a subset of the chalcone synthase multigene family. Plant Mol. Biol. 22: 239–253.

    Article  PubMed  CAS  Google Scholar 

  48. FEINBAUM, R.L., AUSUBEL, F.M. 1992. Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol. Cell. Biol. 8: 1985–1992.

    Google Scholar 

  49. RYDER, T.B., HEDRICK, S.A., BELL, J.N., LIANG, X., CLOUSE, S.D., LAMB, C.J. 1987. Organization and differential activation of a gene family encoding the plant defense enzyme chalcone synthase in Phaseolus vulgaris. Mol. Gen. Genet. 210: 219–233.

    Article  PubMed  CAS  Google Scholar 

  50. AYABE, S., UDAGAWA, A., FURUYA, T. 1988. Stimulation of chalcone synthase activity by yeast extract in cultured Glycyrrhiza echinata cells and 5-deoxyflavanone formation by isolated protoplasts. Plant Cell Rep. 7: 35–38.

    Article  CAS  Google Scholar 

  51. NAKAJIMA, O., SHIBUYA, M., HAKAMATSUKA, T., NOGUCHI, H., EBIZUKA, Y., SANKAWA, U. 1996. cDNA and genomic DNA clones of chalcone synthase from Pueraria lobata. Biol. Pharmacol. Bulletin 19: 71–76.

    Article  Google Scholar 

  52. DEWICK, P.M., STEELE, M.J. 1982. Biosynthesis of the phytoalexin phaseollin in Phaseolus vulgaris. Phytochemistry 21: 1599–1603.

    CAS  Google Scholar 

  53. AYABE, S.I., UDAGAWA, A., FURUYA, T. 1988. NAD(P)H-dependent 6′-deoxychal-cone synthase activity in Glycyrrhiza echinata cells induced by yeast extract. Arch. Biochem. Biophys. 261: 458–162.

    Article  PubMed  CAS  Google Scholar 

  54. WELLE, R., GRISEBACH, H. 1988. Isolation of a novel NADPH-dependent reductase which coacts with chalcone synthase in the biosynthesis of 6′-deoxychalcone. FEBS Lett. 236: 221–225.

    Article  CAS  Google Scholar 

  55. WELLE, R., SCHRÖDER, G., SCHILTZ, E., GRISEBACH, H., SCHRÖDER, J. 1991. Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. cv. Harosoy 63). Eur. J Biochem. 196: 423–30.

    Article  PubMed  CAS  Google Scholar 

  56. BALLANCE, G.M., DIXON, R.A. 1994. Medicago sativa cDNAs encoding chalcone reductase. Plant Physiol. 107: 1027–1028.

    Google Scholar 

  57. SALLAUD, C., EL-TURK, J., BIGARRÉ, L., SEVIN, H., WELLE, R., ESNAULT, R. 1995. Nucleotide sequences of three chalcone reductase genes from alfalfa. Plant Physiol. 108: 869–870.

    Article  PubMed  CAS  Google Scholar 

  58. SALLAUD, C., ELTURK, J., BREDA, C., BUFFARD, D., DEKOZAK, I., ESNAULT, R., KONDOROSI, A. 1995. Differential expression of cDNA coding for chalcone reductase, a key enzyme of the 5-deoxyflavonoid pathway, under various stress conditions in Medicago sativa. Plant Sci. 109: 179–190.

    Article  CAS  Google Scholar 

  59. AKASHI, T., FURUNO, T., FUTAMI, K., HONDA, M., TAKAHASHI, T., WELLE, R., AYABE, S. 1996. A cDNA for polyketide reductase (Accession No. D83718) that catalyzes the formation of 6′-deoxychalcone from cultured Glycyrrhiza echinata L. cells. Plant Physiol. 111: 347–348.

    Article  Google Scholar 

  60. HAKAMATSUKA, T., EBIZUKA, Y., SANKAWA, U. 1994. Pueraria lobata (kudzu vine): in vitro culture and the production of isoflavonoids. pp. 336–400 in Biotechnology in Agriculture and Forestry (Y. P. S Bajai, ed.), Springer-Verlag, Berlin.

    Google Scholar 

  61. TROPF, S., KÄRCHER, B., SCHRÖDER, G., SCHRÖDER, J. 1995. Reaction mechanisms of homodimeric plant polyketide synthases (stilbene and chalcone synthase). A single active site for the condensing reaction is sufficient for synthesis of stilbenes, chalcones, and 6′-deoxychalcones. J. Biol. Chem. 270: 7922–7928.

    Article  PubMed  CAS  Google Scholar 

  62. NI, W., FAHRENDORF, T., BALLANCE, G.M., LAMB, C.J., DIXON, R.A. 1996. Stress responses in alfalfa (Medicago sativa L.). XX. Transcriptional activation of phenyl-propanoid pathway genes in elicitor-treated cell suspension cultures. Plant Mol. Biol. 30: 427–438.

    Article  PubMed  CAS  Google Scholar 

  63. HAGMANN, M., GRISEBACH, H. 1984. Enzymatic rearrangement of flavanone to isoflavone. FEBS Lett. 175: 199–202.

    Article  CAS  Google Scholar 

  64. HASHIM, M.F., HAKAMATSUKA, T., EBIZUKA, Y., SANKAWA, U. 1990. Reaction mechamism of oxidative rearrangement of flavanone in isoflavone biosynthesis. FEBS Lett. 271: 219–222.

    Article  PubMed  CAS  Google Scholar 

  65. HAKAMATSUKA, T., HASHIM, M.F., EBIZUKA, Y., SANKAWA, U. 1991. P-450-dependent oxidative rearrangement in isoflavone biosynthesis: reconstitution of P-450 and NADPH:P450 reductase. Tetrahedron 47: 5969–5978.

    Article  CAS  Google Scholar 

  66. KOCHS, G., GRISEBACH, H. 1986. Enzymic synthesis of isoflavones. FEBS Lett. 155: 311–318.

    CAS  Google Scholar 

  67. HAKAMATSUKA, T., MORI, K., ISHIDA, S., EBIZUKA, Y., SANKAWA, U. 1998. Purification of 2-hydroxyisoflavone dehydratase from the cell cultures of Pueraria lobata. Phytochemistry 49: 497–505.

    Article  CAS  Google Scholar 

  68. MIZUTANI, M., WARD, E., OHTA, D. 1998. Cytochrome P450 superfamily in Arabidopsis thaliana: isolation of cDNAs, differential expression, and RFLP mapping of multiple cytochromes P450. Plant Mol. Biol. 37: 39–52.

    Article  PubMed  CAS  Google Scholar 

  69. HINDERER, W., FLENTJE, U., BARZ, W. 1987. Microsomal isoflavone 2′-and 3′-hydroxylases from chickpea (Cicer arietinum L.) cell suspensions induced for ptero-carpan phytoalexin formation. FEBS Lett. 214: 101–106.

    Article  CAS  Google Scholar 

  70. DEWICK, P.M., MARTIN, M. 1979. Biosynthesis of pterocarpan, isoflavan and coumes-tan metabolites of Medicago sativa: chalcone, isoflavone and isoflavanone precursors. Phytochemistry 18: 597–602.

    Article  CAS  Google Scholar 

  71. KESSMANN, H., CHOUDHARY, A.D., DIXON, R.A. 1990. Stress responses in alfalfa (Medicago sativa L.) III. Induction of medicarpin and cytochrome P450 enzyme activities in elicitor-treated cell suspension cultures and protoplasts. Plant Cell Rep. 9: 38–41.

    Article  CAS  Google Scholar 

  72. WONG, E., FRANCIS, C.M. 1968. Flavonoids in genotypes of Trifolium subterraneum-I. The normal flavonoid pattern of the Geraldton variety. Phytochemistry 7: 2123–2129.

    Article  CAS  Google Scholar 

  73. WENGENMAYER, H., EBEL, J., GRISEBACH, H. 1974. Purification and properties of a S-adenosylmethionine: isoflavone 4′-O-methyltransferase from cell suspension cultures of Cicer arietinum L. Eur. J. Biochem. 50: 135–143.

    Article  PubMed  CAS  Google Scholar 

  74. EDWARDS, R., DIXON, R.A. 1991. Isoflavone O-methyltransferase activities in elicitor-treated cell suspension cultures of Medicago sativa. Phytochemistry 30: 2597–2606.

    Article  CAS  Google Scholar 

  75. HE, X.-Z., DIXON, R.A. 1996. Affinity chromatography, substrate/product specificity and amino acid sequence analysis of an isoflavone O-methyltransferase from alfalfa (Medicago sativa L.). Arch. Biochem. Biophy. 336: 121–129.

    Article  CAS  Google Scholar 

  76. DIXON, R.A., CHOUDHARY, A.D., DALKIN, K., EDWARDS, R., FAHRENDORF, T., GOWRI, G., HARRISON, M.J., LAMB, C.J., LOAKE, G.J., MAXWELL, C.A., ORR, J., PAIVA, N.L. 1992. Molecular biology of stress-induced phenylpropanoid biosynthesis in alfalfa, pp. 91–138 in Phenolic Metabolism in Plants (H. A. Stafford, R.K., Ibrahim, eds.), Plenum Press, New York.

    Chapter  Google Scholar 

  77. WU, Q., PREISIG, C.L., VANETTEN, H.D. 1998. Isolation of the cDNAs encoding (+)6a-hydroxymaackiain 3-O-methyltransferase, the terminal step for the synthesis of the phytoalexin pisatin in Pisum sativum. Plant Mol. Biol. 35: 551–560.

    Article  Google Scholar 

  78. HE, X.-Z., REDDY, J.T., DIXON, R.A. 1998. Stress responses in alfalfa (Medicago sativa L.) XXII. cDNA cloning and characterization of an elicitor-inducible isoflavone 7-O-methyltransferase. Plant Mol. Biol. 36: 43–54.

    Article  PubMed  CAS  Google Scholar 

  79. DIXON, R.A., HARRISON, M.J., PAIVA, N.L. 1995. The isoflavonoid phytoalexin pathway: from enzymes to genes to transcription factors. Physiol. Plant. 93: 385–392.

    Article  CAS  Google Scholar 

  80. HOLTON, T.A., CORNISH, E.C 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071–1083.

    PubMed  CAS  Google Scholar 

  81. BÉNABEN, V., DUC, G., LEFEBVRE, V., HUGUET, T. 1995. TE7, an inefficient symbiotic mutant of Medicago truncatula Gaertn. cv jemalong. Plant Physiol. 107: 53–62.

    PubMed  Google Scholar 

  82. LINDSAY, W.P, LAMB, C.J., DIXON, R.A. 1993. Microbial recognition and activation of plant defense mechanisms. Trends Microbiol. 1: 181–186.

    Article  PubMed  CAS  Google Scholar 

  83. LAMB, C., DIXON, R.A. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 251–275.

    Article  PubMed  CAS  Google Scholar 

  84. YU, L.M., LAMB, C.J., DIXON, R.A. 1993. Purification and biochemical characterization of two proteins which bind to the H-box cis-element implicated in transcriptional activation of plant defense genes. Plant J. 3: 805–816.

    Article  PubMed  CAS  Google Scholar 

  85. DRON, M., CLOUSE, S.D., DIXON, R.A., LAWTON, M.A., LAMB, C.J. 1988. Glutathione and fungal elicitor regulation of a plant-defense gene promoter in electroporated protoplasts. Proc. Natl. Acad. Sci. USA 85: 6738–6742.

    Article  PubMed  CAS  Google Scholar 

  86. HARRISON, M.J., CHOUDHARY, A.D., DUBERY, I., LAMB, C.J., DIXON, R.A. 1991. Cis-elements and trans-acting factors for the quantitive expression of a bean chalcone synthase gene promoter in electroporated alfalfa protoplasts. Plant Mol. Biol. 16: 877–890.

    Article  PubMed  Google Scholar 

  87. FAKTOR, O., LOAKE, G., DIXON, R.A., LAMB, C.J. 1997. The G-box and H-box in a 39 bp region of a French bean chalcone synthase promotr constitute a tissue-specific regulatory element. Plant J. 11: 1105–1113.

    Article  CAS  Google Scholar 

  88. HARRISON, M.J., LAWTON, M.A., LAMB, C.J., DIXON, R.A. 1991. Characterization of a nuclear protein which binds to three elements within the silencer region of a bean chalcone synthase gene promoter. Proc. Natl. Acad. Sci., USA 88: 2515–2519.

    Article  PubMed  CAS  Google Scholar 

  89. LAWTON, M.A., CLOUSE, S.D., LAMB, C.J. 1990. Glutathione-elicited changes in chromatin structure within the promoter of the defense gene chalcone synthase. Plant Cell Rep. 8: 561–564.

    Article  CAS  Google Scholar 

  90. ARIAS, J.A., DIXON, R.A., LAMB, C.J. 1993. Dissection of the functional architecture of a plant defense gene promoter using a homologous in vitro transcription system. Plant Cell 5: 485–196.

    PubMed  CAS  Google Scholar 

  91. GIFFIN, W., TORRANCE, H., RODDA, D.J., PRÉFONTAINE, G.G., POPE, L., HACHÉ, R.J.G. 1996. Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 380: 265–268.

    Article  PubMed  CAS  Google Scholar 

  92. DRÖGE-LASER, W., KAISER, A., LINDSAY, W.P., HALKIER, B., LOAKE, G.A., DOERNER, P.W., DIXON, R.A., LAMB, C.J. 1997. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP transcription factor, G/HBF-1, in the induction of early transcription-dependent defenses. EMBO J. 16: 726–738.

    Article  PubMed  Google Scholar 

  93. ARMSTRONG, G.A., WEISSHAAR, B., HAHLBROCK, K. 1992. Homodimeric and heterodimeric leucine zipper proteins and nuclear factors from parsley recognize diverse promoter elements with ACGT cores. Plant Cell 4: 525–537.

    PubMed  CAS  Google Scholar 

  94. SOMSSICH, I.E., HAHLBROCK, K. 1998. Pathogen defence in plants—a paradigm of biological complexity. Trends Plant Sci. 3: 86–90.

    Article  Google Scholar 

  95. RYALS, J., LAWTON, K.A., DELANEY, T.P., FRIEDRICH, L., KESSMANN, H., NEUENSCHWANDER, U., UKNES, S., VERNOOIJ, B., WEYMANN, K. 1995. Signal transduction in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 92: 4202–4205.

    Article  PubMed  CAS  Google Scholar 

  96. SHIRASU, K., NAKAJIMA, H., RAJASEKHAR, V.K., DIXON, R.A., LAMB, C.J. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9: 261–270.

    PubMed  CAS  Google Scholar 

  97. GUO, Z.-J., LAMB, C., DIXON, R.A. 1998. Potentiation of the oxidative burst and isoflavonoid phytoalexin accumulation by serine protease inhibitors. Plant Physiol., in press:

    Google Scholar 

  98. LEVINE, A., TENHAKEN, R., DIXON, R.A., LAMB, C.J. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response as a local trigger of programmed cell death and a diffusible inducer of cellular protectant genes. Cell 79: 583–593.

    Article  PubMed  CAS  Google Scholar 

  99. GUO, Z.-J., LAMB, C., DIXON, R.A. 1997. Release and biological activity of diffusible signal compounds from elicited plant cells. J. Plant Physiol. 151: 699–710.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dixon, R.A., Canovas, P., Guo, ZJ., He, XZ., Lamb, C., McAlister, F. (1999). Molecular Controls for Isoflavonoid Biosynthesis in Relation to Plant and Human Health. In: Romeo, J.T. (eds) Phytochemicals in Human Health Protection, Nutrition, and Plant Defense. Recent Advances in Phytochemistry, vol 33. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4689-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4689-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7123-6

  • Online ISBN: 978-1-4615-4689-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics