Skip to main content

Abstract

There are many tentatives to apply non classical logics to quantum theory (see, e.g., the excellent book of Jammer[1]). Here we will be concerned with non distributive quantum logic, (which we will abbreviate as QL, in what follows) first introduced by Birkhoff and von Neumann[2]and which has been developed by Jauch[3], Piron[4], Finkelsteinl[5,6], Grib[7,9], Zapatrin [10,11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Jammer, The Philosophy of Quantum Mechanics (J. Wiley & Sons, New York, 1974).

    Google Scholar 

  2. G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. Math. 37, 823–843 (1936).

    Article  Google Scholar 

  3. C. Piron, Axiomatique quantique, Heiv. Phys. Acta 37(4–5), 4–5 (1964).

    MathSciNet  MATH  Google Scholar 

  4. J. M. Jauch and C. Piron, On the structure of quantal proposition systems, Heiv. Phys. Acta. 42(6), 842–848 (1969).

    MathSciNet  MATH  Google Scholar 

  5. D. Finkelstein, The logic of quantum mechanics, Trans. New York Acad. Sci. 25, 621–627, (1969).

    Article  MathSciNet  Google Scholar 

  6. D. Finkelstein and S. R. Finkelstein, Computational complementarity, Int. J. Theor. Phys. 22(8), 753–779 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. A. Grib and R. R. Zapatrin, Automata simulating quantum logics, bit. J. Theor. Phys. 29 (2), 113–123 (1990);

    Article  MathSciNet  MATH  Google Scholar 

  8. A. A. Grib and R. R. Zapatrin, Topology lattice as quantum logic, Int. J. Theor. Phys. 31(7), 1093–1101 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. A. Grib and R. R. Zapatrin, Topologimeter and the problem of physical interpretation of topology lattice, Int. J. Theor. Phys. 35(3), 593–604 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  10. R. R. Zapatrin, Binary quantum logic and generating semigroups, Int. J. Theor. Phys. 28 (11), 1323–1332 (1989);

    Article  MathSciNet  MATH  Google Scholar 

  11. R. R. Zapatrin, Binary logic is rich enough, Int. J. Theor. Phys. 31(2), 211–219 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Putnam, Lógica, in: Enciclopédia Einaudi 13, (Imprensa Nacional-Casa da Moeda, Lisboa, 1989), pp. 11–195.

    Google Scholar 

  13. J. M. Jauch, Foundations of Quantum Mechanics (Addison-Wesley Publishing Co., Reading, MA, 1968).

    Google Scholar 

  14. N. Bourbaki, Théorie des Ensembles (Hermann, Paris, 1957).

    Google Scholar 

  15. G. Birkhoff, Lattice Theory (third edition), AMS Colloc. Publ., vol. 25 (AMS, Providence, Rhode Island, 1993).

    Google Scholar 

  16. C. Piron, Axiomatique Quantique, Ph.D. thesis, Univ. Lausanne, 1993.

    Google Scholar 

  17. H. Putnam,Boston Studies in the Phil. Sci. 5, 216–241 (1969).

    Article  Google Scholar 

  18. V. S. Varadarajan,Geometry of Quantum Theory, vols. 1 and 2 (Van Nostrand Reinhold Co., New York, 1970).

    MATH  Google Scholar 

  19. J. Bub, On the Completeness of Quantum Mechanics, in: Contemporary Research in the Foundations of Quantum Mechanics, edited by C. A. Hooker (Reidel, Dordrecht, 1973), pp.1–65.

    Chapter  Google Scholar 

  20. P. Jordan, J. von Neumann, and E. P. Wigner, On an algebraic generalization of the quantum mechanics formalism, Ann. Math. 35, 29–64 (1934).

    Article  Google Scholar 

  21. I. E. Segal, Postulates for general quantum mechanics, Ann. Math. 48, 930–948 (1947).

    Article  MATH  Google Scholar 

  22. R. Haag and D. Kastler, An algebraic approach to quantum field theory, J. Math. Phys. 5(7), 848–861 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A. A. Grib, Quantum logical interpretation of quantum mechanics—the role of time, Int. J. Theor. Phys. 32(12), 2389–2400 (1993).

    Article  MathSciNet  Google Scholar 

  24. K. Ramakrishna Rao, Meditation and Mind/Matter Interface, in: The Interrelationship Between Mind and Matter, edited by B. Rubik (The Center for Frontier Sciences, Temple University, Philadelphia, PA, 1992), PP.223-.

    Google Scholar 

  25. A. A. Grib, in: Philosophical Problems — Quantum Mechanics and Relativity Theory (in memory of V. A. Fock) (in Russian), edited by P. P. Pavinsky (Izdatelstvo Leningradskogo Universiteta, 1980), pp. 130–144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grib, A.A., Rodrigues, W.A. (1999). Quantum Logic (QL). In: Nonlocality in Quantum Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4687-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4687-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7122-9

  • Online ISBN: 978-1-4615-4687-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics