Advertisement

Copenhagen Interpretation

  • Andrey Anatoljevich Grib
  • Waldyr Alves RodriguesJr.

Abstract

In a discussion with Einstein on the EPR issue, Bohr[1],who is considered the “father” of the Copenhagen interpretation (CI), made claims against Einstein’s idea of objective elements of reality existing in the microworld. He believed that the description given by quantum theory is complete. Also he insisted on four important features of quantum physics, which are:
  1. (a)

    “Impossibility of any acute separation of the behavior of the atomic objects and the interaction with the measuring devices which serve to define the conditions under which the phenomena appear.”

     
  2. (b)

    “The formalism does not allow pictorial representations, on customary lines, but aims directly at establishing relations between observations, obtained under well defined conditions.”

     
  3. (c)

    “It is imperative to realize that in every account of physical experience we must describe both experimental conditions and observations by the same means of communication as the one used in classical physics.”

     
  4. (d)

    “We have been forced... to reckon with a free choice on the part of nature between several possibilities.”

     

Keywords

Quantum Theory Classical Physic Quantum Particle Schrodinger Equation Quantum Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    N. Bohr, Atomic Physics and Human Knowledge (Science Editions, New York, 1961).Google Scholar
  2. [2]
    C. F. von Weizsäcker, in: Quantum Theory and Beyond: Essays and Discussions Arising from a Colloquium, edited by E. Bastin (Cambridge University Press, Cambridge, 1971), pp.25–31.Google Scholar
  3. [3]
    A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, Dordrecht,1993).MATHGoogle Scholar
  4. [4]
    L. E. Ballentine, The statistical interpretation of quantum theory, Rev. Mod. Phys. 42,358–381 (1970).ADSMATHCrossRefGoogle Scholar
  5. [5]
    H. P. Stapp, The Copenhagen interpretation, Am. J. Phys. 40(8), 1098–1116 (1972).MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    B. d’Espagnat, Quantum theory and reality, Sci. Am. 241(5), 128–140 (1979).Google Scholar
  7. [7]
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, 1987).MATHGoogle Scholar
  8. [8]
    W. Heisenberg, in: Niels Bohr and the Development of Physics, edited by W. Pauli (McGraw-Hill, New York, 1955), pp. 12–29.Google Scholar
  9. [9]
    G. Ludwig, An Axiomatic Basis for Quantum Mechanics, vols. l and 2 (Springer-Verlag, Berlin, 1985).MATHCrossRefGoogle Scholar
  10. [10]
    W. A. Rodrigues Jr. and M. A. F. Rosa, The meaning of time in relativity theory and Einstein’s later view of the twin paradox, Found. Phys. 19(6), 705–727 (1989).MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    A. Einstein, in: Albert Einstein:Philosopher-Scientist, edited by P. A. Schilpp (Cambridge Univ. Press, London, 1970), pp.1–94.Google Scholar
  12. [12]
    V. Barashenkov and W. A. Rodrigues Jr., Launching of non-dispersive sub—and superluminal beams, N. Cimento B 113(13), 319–328,1998.ADSGoogle Scholar
  13. [13]
    G. Nimtz, in: Proceedings of Adriatic Research Conference: Tunneling and its Implications (07/30–08/02,1996), edited by D. Mugnai, A. Ranfagni, L. S. Schulman (World Scientific Publishing Co., Singapore, 1997), pp.30–08.Google Scholar
  14. [14]
    S. Esposito, Classical y9 c solutions of Maxwell’s equations and the photon tunneling effect, Phys. Lett. A 225 (4–6), 4–6 (1997).MathSciNetMATHGoogle Scholar
  15. [15]
    A. Bohr and O. Ulfbeck, Primary manifestation of symmetry-origin of quantal indeterminancy Rev. Mod. Phys. 67(1), 1–35 (1995).MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    E. Wigner, On the unitary representations of the Lorentz group, Ann. Math. 40, 140–204 (1939).MathSciNetCrossRefGoogle Scholar
  17. [17]
    H. Schmidt, Collapse of the state-vector and the psychokinetic effect, Found. Phys. 12(6), 565–581 (1982).ADSCrossRefGoogle Scholar
  18. [18]
    R. G. Jahn and B. J. Dunne, Margins of Reality: The Role of Consciousness in the Physical World (Harcourt Brace Jovanovich Publ., San Diego, 1987).Google Scholar
  19. [19]
    H. P. Stapp,Theoretical model of a purported empirical violation of the predictions of quantum theory, Phys. Rev. A 50(1), 18–22 (1994)MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    R. Penrose,Shadows of the Mind: A Search for the Missing Science of Consciousness (Oxford University Press, Oxford, 1994).Google Scholar
  21. [21]
    W. G. Unruh, Notes on black hole evaporation, Phys. Rev. D 14(4), 870–892 (1976).ADSCrossRefGoogle Scholar
  22. [22]
    A. A. Grib, S. G. Mamayev and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields (Friedmann Laboratory Publishing, St. Petersburg, 1994).Google Scholar
  23. [23]
    D. Finkelstein, Quantum Relativity (Springer-Verlag, Berlin, 1996).MATHCrossRefGoogle Scholar
  24. [24]
    J. von Neumann, Mathematical Foundations of Quantum Theory (Princeton University Press, Princeton, 1955).Google Scholar
  25. [25]
    W. Heisenberg, Physics and Philosophy (Harper and Row, New York, 1958).Google Scholar
  26. [26]
    V. Fock,Quantum Physics and the Structure of Matter, (in Russian) (LGU Press, Leningrad, 1965).Google Scholar
  27. [27]
    H. P. Stapp, Mind,Matter, and Quantum Mechanics (Springer-Verlag, Berlin, 1993).Google Scholar
  28. [28]
    E London and F. Bauer, La Théorie de l’Observation en Mécanique Quantique (Hermann & Cie., Paris, 1939).Google Scholar
  29. [29]
    E. P. Wigner, Die Messung quantenmechanischer operatoren, Z. Phys. 133,101–108 (1952).MathSciNetADSMATHGoogle Scholar
  30. [30]
    K. V. Laurikainen, Beyond the Atom: The Philosophical Thought of Wolfgang Pauli (Springer-Verlag, Heildelbeg, 1986).Google Scholar
  31. [31]
    O. C. de Beauregard,Einstein-Podolski-Rosen non-separability and Feynman non-locality, Phys. Leu. A 60(2), 93–95 (1977).ADSCrossRefGoogle Scholar
  32. [32]
    O. C. de Beauregard, Time symmetry and the Einstein paradox, N. Cimento B 42(1), 41–64 (1977).ADSCrossRefGoogle Scholar
  33. [33]
    O. C. de Beauregard, Time symmetry and the Einstein paradox. 2, N. Cimento B 51(2), 267–279 (1979).ADSCrossRefGoogle Scholar
  34. [34]
    O. C. de Beauregard, CPT invariance and interpretation of quantum mechanics, Found. Phys. 10(7–8), 7–8 (1980).ADSCrossRefGoogle Scholar
  35. [35]
    B. d’Espagnat, Conceptual Foundations of Quantum Mechanics (W. A. Benjamin, Reading, MA, 1976).Google Scholar
  36. [36]
    J. C. Eccles, How the Self Controls its Brain (Springer-Verlag, Berlin,1994).CrossRefGoogle Scholar
  37. [37]
    E. P. Wigner, in: The Scientist Speculates, edited by I. J. Good (W. Heinemann, London, 1961), pp. 284–302.Google Scholar
  38. [38]
    E. Squires,Conscious Mind and the Physical World (IOP, Bristol, New York, 1990).Google Scholar
  39. [39]
    J. A. Wheeler, in: Mathematical Foundations of Quantum Mechanics, edited by A. R. Marlow (Academic Press, New York, 1975), pp. 9–48.Google Scholar
  40. [40]
    B. d’Espagnat, Veiled Reality (Addison-Wesley Publ. Co., Reading, MA., 1995).Google Scholar
  41. [41]
    J. Barrow and F. Tippler, Anthropic Principle (Oxford University Press, Oxford, 1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Andrey Anatoljevich Grib
    • 1
  • Waldyr Alves RodriguesJr.
    • 2
  1. 1.State University of Economics and Finances of St. PetersburgSt. PetersburgRussia
  2. 2.State University of Campinas and Salesian UniversityCampinasBrazil

Personalised recommendations