Advertisement

De Broglie-Bohm Relativistic HVT

  • Andrey Anatoljevich Grib
  • Waldyr Alves RodriguesJr.

Abstract

In this ChapterM = (M, D,η), denotes Minkowski spacetime[1], i.e., M is a four dimensional manifold diffeomorphic to R 4, η is a Lorentzian metric of signature (1, 3) and D is the Levi-Civita connection of η. As is well known, under these conditions there exists a global coordinate chart 〈 x µ 〉 of the maximal atlas of M, such that there is a global basis ∂/∂x µ of TM (the tangent bundle) such thatl
$$ \eta \mu v = \eta (\partial /\partial {{x}^{\mu }},\partial /\partial {{x}^{v}}) = diag(1, - 1, - 1, - 1) $$
(11.1)

Keywords

Dirac Equation Configuration Space Quantum Potential Relativistic Wave Equation Ontological Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. K. Sachs and H. Wu, General Relativity for Mathematicians (Springer, New York, 1997).Google Scholar
  2. [2]
    D. Bohm and B. J. Hilley, Undivided Universe (Routledge, London and New York, 1993).Google Scholar
  3. [3]
    P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
  4. [4]
    W. A. Rodrigues Jr. and J. Y. Lu,On the existence of undistorted progressive waves (UPWs) of arbitrary speeds 0 < v < oo in nature, Found. Phys. 27(3) 453–508 (1997).MathSciNetCrossRefGoogle Scholar
  5. [5]
    W. A. Rodrigues Jr., Q. A. G. de Souza, J. Vaz Jr. and P. Lounesto, DiracHestenes spinor fields in Riemann-Cartan manifolds, Int. J. Theor. Phys. 35(9), 1849–1900 (1996).MATHCrossRefGoogle Scholar
  6. [6]
    A. Lasenby, S. Gull and C. Doran, in: Clifford (Geometrical) Algebras with Applications in Physics, Mathematics and Engineering, edited by W. E. Baylis (Birkhäuser, Boston, 1996), pp.147–169.Google Scholar
  7. [7]
    W. A. Rodrigues Jr., J. Vaz Jr, E. Recami and G. Sallesi,About zitterbewegung and electron structure, Phys. Lett. B 318(4), 623–628 (1993).MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    W. A. Rodrigues Jr. and J. Vaz Jr., in: Electron Theory and Quantum Electrodynamics, edited by J. P. Dowling (Plenum Publ. Corporation, New York, 1997), pp. 201–222.Google Scholar
  9. [9]
    W. A. Rodrigues Jr., J. Vaz Jr. and M. Paysic The Clifford bundle and the dynamics of the superparticle, Banach Center Publ., Polish Acad. Sci. 37, 295–314 (1996).Google Scholar
  10. [10]
    W. E. Baylis,, in: Clifford (Geometrical) Algebras with Applications in Physics, Mathematics and Engineering, edited by W. E. Baylis (Birkhäuser, Boston, 1996), pp.253–268.Google Scholar
  11. [11]
    H. Schmidt, Collapse of the state vector and PK effect, Found. Phys. 12(6) 565–581 (1982).ADSCrossRefGoogle Scholar
  12. [12]
    H. P. Stapp, Theoretical model of a purported empirical violation of the predictions of quantum theory, Phys. Rev. A 50(1), 18–22 (1994).MathSciNetGoogle Scholar
  13. [13]
    E. J. Squires, An experiment to test an explanation of a possible violation of quantum theory, Found. Phys. Lett. 8(6), 589–591 (1995).MathSciNetCrossRefGoogle Scholar
  14. [14]
    O. Costa de Beauregard, Macroscopic retrocausation, Found. Phys. Lett. 8(3), 287–291(1995).MathSciNetCrossRefGoogle Scholar
  15. [15]
    L. de Broglie, Non Linear Quantum Mechanics. A Causal Interpretation, Elsevier Publishing Co., Amsterdam, 1960.Google Scholar
  16. [16]
    L. Mackinnon, Nondispersive de Broglie wave packet, Found.Phys. 8(3–4), 3–4 (1978).ADSCrossRefGoogle Scholar
  17. [17]
    Ph. Gueret and J. P. Vigier, De Broglie wave particle duality in the stochastic interpretation of quantum mechanics—a testable physical assumption, Found. Phys. 12(11), 1057–1083 (1982);MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    Ph. Gueret and J. P. Vigier, Relativistic wave equations with quantum potential, 38(4),125–128 (1983).MathSciNetGoogle Scholar
  19. [19]
    H. Freidstadt, The causal formulation of quantum mechanics of particles, Nuovo Cimento 5(suppl.), 1–70 (1957).Google Scholar
  20. [20]
    A. O. Barut, Schrödinger’s interpretation of IF as a continuous charge distribution, Annalen der Phys. 45(7), 31–36 (1998).Google Scholar
  21. [21]
    A. O. Barut and N. Una, A new approach to bound-state quantum electrodynamics. 1. Theory, Physica A 142(1–3), 1–3 (1987).ADSCrossRefGoogle Scholar
  22. [22]
    A. O. Barut and J. P. Dowling, Quantum electrodynamics based on self-energy without 2nd quantization—the Lamb shift and long range Casimir-Polder-van der Walls forces near boundaries Phys. Rev. A 36(6), 2250–2556 (1987).Google Scholar
  23. [23]
    A. O. Barut, The revival of Schrödinger’s interpretation of quantum mechanics, Found. Phys. Lett. 1 (1), 47–56 (1988).MathSciNetCrossRefGoogle Scholar
  24. [24]
    P. Saari and K. Reivelt, Evidence for X-shaped propagation-invariant localized light waves, Phys. Rev. Lett. 79(21), 4135–4138 (1997).ADSCrossRefGoogle Scholar
  25. [25]
    E. Capelas de Oliveira and W. A. Rodrigues Jr., Superluminal electromagnetic waves in free space, Ann. der Physik 7(7–8), 7–8 (1998).ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Andrey Anatoljevich Grib
    • 1
  • Waldyr Alves RodriguesJr.
    • 2
  1. 1.State University of Economics and Finances of St. PetersburgSt. PetersburgRussia
  2. 2.State University of Campinas and Salesian UniversityCampinasBrazil

Personalised recommendations