Skip to main content

Glia-Neuron Interaction by High-Affinity Glutamate Transporters in Neurotransmission

  • Chapter
The Functional Roles of Glial Cells in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 468))

Abstract

Interactions between glial cells and neurons are manifold, but one of the most important encounters between these cells occurs during synaptic transmission, as indicated in Fig. 1. During neurotransmission glial cells are not silent, but support actively the dialogue between neuronal cells. A crucial step during neurotransmission is the rapid removal of the neurotransmitter from the synaptic cleft and this is thought to be mainly achieved by glial cells. By terminating the transmitter action, glial cells reset neurons for new incoming signals and support thereby normal neuronal signal transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amara S.G. and Arriza J.L. (1993) Neurotransmitter transporters: three distinct gene families. Curr Opin Neurobiol 3: 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Arriza J.L., Fairman W.A., Wadiche J.L, Murdoch G.H., Kavanaugh M.P., and Amara S.G. (1994) Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J Neurosci 14: 5559–5569.

    PubMed  CAS  Google Scholar 

  • Arriza J.L., Eliasof S., Kavanaugh M.P., and Amara S.G. (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94: 4155–4160.

    Article  PubMed  CAS  Google Scholar 

  • Brew H. and Attwell D. (1987) Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 327: 707–709.

    Article  PubMed  CAS  Google Scholar 

  • Choi D.W. (1992) Excitotoxic cell death. J Neurobiol 23: 1261–1276.

    Article  PubMed  CAS  Google Scholar 

  • Copenhagen D.R., Ashmore J.F., and Schnapf J.K. (1983) Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina. Vision Res 23: 363–369.

    Article  PubMed  CAS  Google Scholar 

  • Copenhagen D.R. and Jahr C.E. (1989) Release of endogenous excitatory amino acids from turtle photoreceptors. Nature 341: 536–539.

    Article  PubMed  CAS  Google Scholar 

  • Danbolt N.C., Storm Mathisen J., Kanner B.I., and Storm-Mathisen J. (1992) An [Na+ + K+]coupled Lglutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51: 295–310.

    Article  PubMed  CAS  Google Scholar 

  • Danbolt N.C. (1994) The high affinity uptake system for excitatory amino acids in the brain. Prog Neurobiol 44: 377–396.

    Article  PubMed  CAS  Google Scholar 

  • Derouiche A. and Rauen T. (1995) Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in the retinal glia: evidence for coupling of GLAST and GS in transmitter clearance. J Neurosci Res 42: 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Dowling J.E. and Ripps H. (1972) Adaptation in skate photoreceptors. J Gen Physiol 60: 698–719.

    Article  PubMed  CAS  Google Scholar 

  • Eliasof S. and Werblin F. (1993) Characterization of the glutamate transporter in retinal cones of the tiger salamander. J Neurosci 13: 402–411.

    PubMed  CAS  Google Scholar 

  • Euler T. and Wässle H. (1995) Immunocytochemical identification of cone bipolar cells in the rat retina. J Comp Neurol 361(3): 461–478.

    Article  PubMed  CAS  Google Scholar 

  • Fairman W.A., Vandenberg R.J., Arriza J.L., Kavanaugh M.P, and Amara S.G. (1995) An excitatory aminoacid transporter with properties of a ligand-gated chloride channel. Nature 375: 599–603.

    Article  PubMed  CAS  Google Scholar 

  • Grant GB. and Dowling J.E. (1995) A glutamate-activated chloride current in cone-driven ON bipolar cells of the white perch retina. J Neurosci 15: 3852–3862.

    PubMed  CAS  Google Scholar 

  • Grant G.B. and Werblin F.S. (1996) A glutamate-elicited chloride current with transporter-like properties in rod photoreceptors of the tiger salamander. Visual Neurosci 13: 135–144.

    Article  CAS  Google Scholar 

  • Harris M.E., Wang Y., Pedigo N.W, Jr., Hensley K., Butterfield D.A., and Carney J.M. (1996) Amyloid beta peptide (25-35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem 67: 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Hartshorne R.P. and Catterall WA. (1984) The sodium channel from rat brain. Purification and subunit composition. J Biol Chem 259: 1667–1675.

    PubMed  CAS  Google Scholar 

  • Kanai Y., Smith C.P., and Hediger M.A. (1993) A new family of neurotransmitter transporters: the highaffinity glutamate transporters. FASEB J 7: 1450–1459.

    PubMed  CAS  Google Scholar 

  • Kanai Y., Nussberger S., Romero M.F., Boron W.F., Hebert S.C., and Hediger M.A. (1995) Electrogenic properties of the epithelial and neuronal high affinity glutamate transporter. J Biol Chem 270: 16561–16568.

    Article  PubMed  CAS  Google Scholar 

  • Kanai Y and Hediger M.A. (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360: 467–471.

    Article  PubMed  CAS  Google Scholar 

  • Kanner B.I. (1991) Amino acid neurotransmitter reuptake: mechanistics, biochemistry, and molecular cloning. Biochemical Society Transactions 19: 92–95.

    PubMed  CAS  Google Scholar 

  • Kanner B.I. and Bendahan A. (1982) Binding order of substrates to the sodium and potassium ion coupled 1-glutamic acid transporter from rat brain. Biochemistry 21: 6327–6330.

    Article  PubMed  CAS  Google Scholar 

  • Massey S.C. and Redburn D.A. (1987) Transmitter circuits in the vertebrate retina. Prog Neurobiol 28: 55–96.

    Article  PubMed  CAS  Google Scholar 

  • Meister A. (1974) Glutamine synthetase of mammals. In: The Enzymes (Boyer P.D. ed), pp. 699–754. New York: Academic Press.

    Google Scholar 

  • Newman M.J., Foster D.L., Wilson T.H., and Kaback H.R. (1981) Purification and reconstitution of functional lactose carrier from Escherichia coli. J Biol Chem 256: 11804–11808.

    PubMed  CAS  Google Scholar 

  • Nicholls D. and Attwell D. (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11: 462–468.

    Article  PubMed  Google Scholar 

  • Olney J.W. (1982) The toxic effects of glutamate and related compounds in the retina and the brain. Retina 2: 341–359.

    Article  PubMed  CAS  Google Scholar 

  • Picaud S.A., Larsson H.P, Grant G.B., Lecar H., and Werblin F.S. (1995) Glutamate-gated chloride channel with glutamate-transporter-like properties in cone photoreceptors of the tiger salamander. J Neurophysiol 74: 1760–1771.

    PubMed  CAS  Google Scholar 

  • Pines G., Danbolt N.C., Bjoras M., Zhang Y., Bendahan A., Eide L., Koepsell H., Storm Mathisen J., Seeberg E., Kanner B.I., and Storm-Mathisen J (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360: 464–467.

    Article  PubMed  CAS  Google Scholar 

  • Pow D.V and Robinson S.R. (1994) Glutamate in some retinal neurons is derived solely from glia Glutamate in some retinal neurons is derived solely from glia. Neuroscience 60: 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Rauen T, Rothstein J.D., and Wässle H. (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell & Tissue Res 286: 325–336.

    Article  CAS  Google Scholar 

  • Rauen T., Taylor W.R., Kuhlbrodt K., and Wiessner M. (1998) High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell & Tissue Res 291: 19–31.

    Article  CAS  Google Scholar 

  • Rauen T. and Kanner B.I. (1994) Localization of the glutamate transporter GLT-1 in rat and macaque monkey retinae. Neurosci Lett 169: 137–140.

    Article  PubMed  CAS  Google Scholar 

  • Riepe R.E. and Norenberg M.D. (1977) Müller cell localisation of glutamine synthetase in rat retina. Nature 268: 654–655.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein J.D., Martin L.J., and Kuncl R.W. (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326: 1464–1468.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein ID., Martin L., Levey A.I., Dykes Hoberg M., Jin L., Wu D., Nash N., and Kuncl R.W. (1994) Localization of neuronal and glial glutamate transporters. Neuron 13: 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein J.D., Dykes-Hoberg M., Pardo C.A., Bristol L.A., Jin L., Kuncl R.W.X., Kanai Y., Hediger M.A., Wang Y., Schielke J.P, and Welty D.F. (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16: 675–686.

    Article  PubMed  CAS  Google Scholar 

  • Storck T, Schulte S., Hofmann K., and Stoffel W. (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89: 10955–10959.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M. and Kaneko A. (1988) L-Glutamate-induced depolarization in solitary photoreceptors: A process that may contribute to the interaction between photoreceptors in situ. Proc Natl Acad Sci USA 85: 5315–5319.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K., Watase K., Manabe T., Yamada K., Watanabe M., Takahashi K., Iwama H., Nishikawa T., Ichihara N., Kikuchi T., Okuyama S., Kawashima N., Hori S., Takimoto M., and Wada K. (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276: 1699–1702.

    Article  PubMed  CAS  Google Scholar 

  • Trifonov Y.A. (1968) Study of synaptic transmission between the photoreceptor and the horizontal cell using electrical stimulation of the retina. Biofìzika 13: 809–817.

    PubMed  CAS  Google Scholar 

  • Vandenbranden C.A.V., Verweij J., Kamermans M., Müller L.J., Ruiter J.M., Vrensen G.F.J.M., and Spekreijse H. (1996) Clearance of neurotransmitter from the cone synaptic cleft in goldfish retina. Vision Res 36: 3859–3874.

    Article  PubMed  CAS  Google Scholar 

  • Vardi N., Kaufman D.L., and Sterling P. (1994) Horizontal cells in cat and monkey retina express different isoforms of glutamic-acid decarboxylase. Vis Neurosci 11: 135–142.

    Article  PubMed  CAS  Google Scholar 

  • Wadiche J.L, Amara S.G., and Kavanaugh M.P. (1995) Ion fluxes associated with excitatory amino acid transport. Neuron 15: 721–728.

    Article  PubMed  CAS  Google Scholar 

  • Wässle H. and Boycott B.B. (1991) Functional architecture of the mammalian retina. Physiol Rev 71(2): 447–480.

    PubMed  Google Scholar 

  • Watkins J.C. (1981) Pharmacology of excitatory amino acid transmitters. In: Amino Acid Neurotransmitters (De Feudis F.V and Mandel P. eds), pp. 205–212. New York: Raven Press.

    Google Scholar 

  • Zerangue N. and Kavanaugh M.P. (1996) Flux coupling in a neuronal glutamate transporter. Nature 383: 634–637.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rauen, T., Fischer, F., Wiessner, M. (1999). Glia-Neuron Interaction by High-Affinity Glutamate Transporters in Neurotransmission. In: Matsas, R., Tsacopoulos, M. (eds) The Functional Roles of Glial Cells in Health and Disease. Advances in Experimental Medicine and Biology, vol 468. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4685-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4685-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7121-2

  • Online ISBN: 978-1-4615-4685-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics