Skip to main content

Role and Mechanism of Action of Glial Cell Deficient/Glial Cell Missing (Glide/Gcm), The Fly Glial Promoting Factor

  • Chapter
The Functional Roles of Glial Cells in Health and Disease

Abstract

The nervous system consists of two main cell types: neurons, which form the intricate network that processes and transmits information, and glial cells, which are nestled within and around the neurons. Although neurons are responsible for the primary function of the system, glial cells perform a myriad of functions essential to its health and maintenance. In addition to their general role as insulators, they are also involved in the control of neuronal development, proliferation, and survival, as well as the regulation of extracellular ionic homeostasis and neurotransmitters (Barres, 1991; Masu et al., 1993; Ebens et al., 1993; Buchanan and Benzer, 1993; Reynold and Woolf, 1993; Xiong and Montell, 1995; Auld et al., 1995). One of the most intriguing observations in neurobiology is that these two cell types, which play such different, yet interdependent roles, often arise from a single, common precursor over the course of development (for reviews, see Anderson, 1989, 1995; McConnell, 1991; Doe and Technau, 1993; Jan and Jan, 1994; Giangrande, 1996). How is the cell fate choice made between neurons and glial cells in the developing nervous system?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akiyama Y., T. Hosoya, A.M. Poole, and Y Hotta. 1996. The gcm-motif: a novel DNA-binding motif conserved in Drosophilaand mammals. Proc. Natl. Acad. Sci. 93, 14912–14916.

    Article  PubMed  CAS  Google Scholar 

  • Altshuller, Y, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, and M.A. Frohman. 1996. Gcml,a mammalian homolog of Drosophila glial cells missing. FEBS Lett. 393, 201–2

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D.J. 1989. The neural crest cell lineage problem: neuropoiesis? Neuron 3, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, D.J. 1995. A molecular switch for the neuron-glia developmental decision. Neuron 15, 1219–1222.

    Article  PubMed  CAS  Google Scholar 

  • Auld, V.J., R.D. Fetter, K. Broadie, and C.S. Goodman. 1995. Gliotactin, a novel transmembrane protein on peripheral glia is required to form the blood-nerve barrier in Drosophila. Cell 81, 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Barres, B.A. 1991. New roles for glia. J. Neurosci. 11, 3685–3694.

    PubMed  CAS  Google Scholar 

  • Bate, M. 1993. The mesoderm and its derivatives. In The development of Drosophila melanogaster (eds. Bate and Martinez Arias), vol. II, pp. 1013–1090, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Baylies, M.K. and M. Bate. 1996. twist:a myogenic switch in Drosophila. Science 272, 1481–1484.

    Article  PubMed  CAS  Google Scholar 

  • Bernardoni R., A.A. Miller, and A. Giangrande. 1998. Glial differentiation does not require a neural ground state. Development 125, 3189–3200.

    PubMed  CAS  Google Scholar 

  • Bernardoni R., V. Vivancos, and A. Giangrande. 1997. glide/gemis expressed and required in the scavenger cell lineage. Dev. Biol. 191, 118–130.

    Article  PubMed  CAS  Google Scholar 

  • Bier, E. 1997. Anti-neural-inhibition: a conserved mechanism for neural induction. Cell 89, 681–684.

    Article  PubMed  CAS  Google Scholar 

  • Bossing, T, G. Udolph, C.Q. Doe, and G.M. Technau. 1996. The embryonic central nervous system lineages of Drosophila melanogaster. Dev. Biol 179, 41–64.

    Article  PubMed  CAS  Google Scholar 

  • Brand A.H. and N. Perrimon. 1993. Targeted gene expression as a mean of altering cell fates and generating dominant phenotypes. Development 118, 401–415.

    PubMed  CAS  Google Scholar 

  • Buchanan, R.L. and S. Benzer. 1993. Defective glia in the Drosophilabrain degeneration mutant drop-dead. Neuron 10, 839–850.

    Article  PubMed  CAS  Google Scholar 

  • Campbell G., H. Güring, T. Lin, E. Spana, S. Anderson, C.Q. Doe, and A. Tomlinson. 1994. rk2, a glial-specific homeodomain protein required for embryonic nerve cord condensation and viability in Drosophila. Development 120, 2957–2966.

    PubMed  CAS  Google Scholar 

  • Campos-Ortega, J.A. 1993. Early neurogenesis. In The development of Drosophila melanogaster (eds. Bate and Martinez Arias), vol. II, pp. 1091–1130, Cold Spring Harbor Laboratory Press, ColdSpring Harbor, New Yo

    Google Scholar 

  • Cantera, R. and G.M. Technau. 1996. Glial cells phagocytose neuronal debris during the metamorphosis of the central nervous system in Drosophila melanogaster. Dev. Genes Evol 206, 277–2

    Article  Google Scholar 

  • Condron, B.G., N.H. Patel, and K. Zinn. 1994. Engrailedcontrols glia/neuronal cell fate decisions at the midline of the central nervous system. Neuron 13, 541–554.

    Article  PubMed  CAS  Google Scholar 

  • Condron, E.G. and K. Zinn. 1995. Activation of cAMP-dependent protein kinase triggers a glial-to-neuronal cell-fate switch in an insect neuroblast lineage. Curr. Biol. 5, 51–61.

    Article  PubMed  CAS  Google Scholar 

  • Doe, C.Q. and G.M. Technau. 1993. Identification and cell lineage of individual neural precursor in the DrosophilaCNS. Trends Neurosci. 16, 510–514.

    Article  PubMed  CAS  Google Scholar 

  • Ebens, A.J., H. Garren, B.N. Cheyette, and S.L. Zipursky. 1993. The Drosophila anachronismlocus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell 74, 15–27.

    Article  PubMed  CAS  Google Scholar 

  • Fredieu, J.R. and A.P. Mahowald. 1989. Glial interactions with neurons during Drosophilaembryogenesis. Development 106, 739–748.

    PubMed  CAS  Google Scholar 

  • Giangrande, A. 1996. Development and organization of glial cells in Drosophila melanogaster. Int. J. Dev. Biol. 40, 917–927.

    PubMed  CAS  Google Scholar 

  • Giangrande A., M.A. Murray, and J. Palka. 1993. Development and organization of glial cells in the Peripheral Nervous System of Drosophila melanogaster. Development 117, 895–9

    PubMed  CAS  Google Scholar 

  • Giesen K., T. Hummel, A. Stollewerk, S. Harrison, A. Travers, and C. Klambt. 1997. Glial development in the DrosophilaCNS requires concomitant activation of glial and repression of neuronal differentiation genes. Development 124, 2307–2316.

    PubMed  CAS  Google Scholar 

  • Goodman, C.S. and CQ. Doe. 1993. Embryonic development of the Drosophilacentral nervous system. In The development of Drosophila melanogaster (eds. Bate and Martinez Arias), vol. II, pp. 1131–1206, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Halter, D.A., J. Urban, C. Rickert, S.S. Ner, K. Ito, A.A. Travers, and G.M. Technau. 1995. The homeobox gene repois required for the differentiation and maintenance of glia function in the embryonic nervous system of Drosophila melanogaster. Development 121, 317–3

    PubMed  CAS  Google Scholar 

  • Henderson, C.E., H.S. Phillips, R.A. Pollock, A.M. Davies, C. Lemeulle, M. Armanini, L.C. Simpson, B. Moffet, R.A. Vandlen, V.E. Koliatos, and A. Rosenthal. 1994. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266, 1062–1064.

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo A., J. Urban, and A. Brand. 1995. Targeted ablation of glia dirupts axon tract formation in the DrosophilaCNS. Development 121, 3703–371

    PubMed  CAS  Google Scholar 

  • Hosoya, T, K. Takizawa, K. Nitta, and Y. Hotta. 1995. glial cells missing:a binary switch between neuronal and glial determination in Drosophila. Cell 82, 1025–1036.

    Google Scholar 

  • Ito K., J. Urban, and G.M. Technau. 1995. Distribution, classification and development of Drosophilaglial cells during late embryogenesis. Roux’s Arch. Dev. Biol. 204, 284–307.

    Article  Google Scholar 

  • Jacobs, J.R. and C.S. Goodman. 1989. Embryonic development of axon pathways in the DrosophilaCNS. I. A glial scaffold appears before the first growth cones. J. Neurosci. 9, 2402–2411.

    PubMed  CAS  Google Scholar 

  • Jan, Y.N. and L.Y. Jan. 1993. HLH proteins, fly neurogenesis, and vertebrate myogenesis. Cell 75, 827–830.

    Article  PubMed  CAS  Google Scholar 

  • Jan, Y.N. and L.Y. Jan. 1994. Genetic control of cell fate specification in Drosophilaperipheral nervous system. Ann Rev. Genet. 28, 373–393.

    Article  PubMed  CAS  Google Scholar 

  • Jones, B.W., R.D. Fetter, G. Tear, and C.S. Goodman. 1995. glial cells missing:a genetic switch that controls glial versus neuronal fate. Cell 82, 1013–1023.

    Article  PubMed  CAS  Google Scholar 

  • Kammerer M., B. Pirola, S. Giglio, and A. Giangrande. 1999. hGCMb, a second human homolog of the fly glide/gemgene. Cytogenet. Cell Genet., In Press.

    Google Scholar 

  • Klambt, C. and C.S. Goodman. 1991. The diversity and pattern of glia during axon pathway fornation in the Drosophilaembryo. Glia 4, 205–213.

    Article  PubMed  CAS  Google Scholar 

  • Klambt C., T. Hummel, T Menne, E. Sadlowski, H. Scholz, and A. Stollewerk. 1996. Development and function of embryonic central nervous system glial cells in Drosophila. Dev. Genetics 18, 40–49

    Article  CAS  Google Scholar 

  • Klambt C., J.R. Jacobs, and C.S. Goodman. 1991. The midline of the Drosophila nervous system: a model for the genetic analysis of cell fate, cell migration, and growth cone guidance. Cell 64, 801–815.

    Article  PubMed  CAS  Google Scholar 

  • Lemke, GE. and J.P. Brockes. 1984. Identification and purification of glial growth factor. J. Neurosci. 4, 75–83.

    PubMed  CAS  Google Scholar 

  • Masu, Y, E. Wolff, B. Holtman, M. Sendtner, G Bre, and H. Thoenen. 1993. Disruption of the CTNF gene results in motor neuron degeneration. Nature 365, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • McConnell, S.K. 1991. The generation of neuronal diversity in the central nervous system. Ann. Rev. Neurosci. 14, 269–300.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D. and C. Birchmeier. 1995. Multiple essential functions of neuregulin in development. Nature 378, 386–390.

    Article  PubMed  CAS  Google Scholar 

  • Miller, A.A., R. Bernardoni, and A. Giangrande. Positive autoregulation of the glial promoting factor glide/gem. EMBO J. 17, 6316–6326.

    Google Scholar 

  • Nelson R.E. L.I. Fessler Y. Tagaki B. Blumberg D.R. Keene RF. Olson C.G. Parker and J.H. Fessler. 1994. Peroxidasin a vel enzyme-matrix protein of Drosophiladevelopment. EMBO J. 13 3438–3447

    Google Scholar 

  • O’Kane, C. and W.J. Gehring. 1987. Detection in situ of genomic regulatory elements in Drosophila. Proa Natl. Acad. Sci. USA 84, 9123–9127.

    Article  CAS  Google Scholar 

  • Perry V.H. 1996. Microglia in the developing and mature central nervous system. In ”Glial Cell Development” (K.R. Jessen and W.D. Richardson eds.) pp. 123–140. Bios Scientific

    Google Scholar 

  • Pfrieger, F.W. and B.A. Barres. 1995. What the fly’s glia tell the fly’s brain. Cell 83, 671–674.

    Article  PubMed  CAS  Google Scholar 

  • Reynold, M.J-L. and C.J. Woolf. 1993. Reciprocal Schwann cell-axon interactions. Curr. Op. in Neurobiol. 3, 686–693.

    Google Scholar 

  • Schmidt H., C. Rickert, T. Bossing, O. Vef, J. Urban, and G.M. Technau. 1997. The embryonic central nervous system lineages of Drosophila melanogaster. Dev. Biol. 189, 186–204.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber J., E. Sock, and M. Wegner. 1997. The regulator of early gliogenesis glial cells missingis a transcription factor with a novel type of DNA-binding domain. Proc. Natl. Acad. Sci. 94, 4739–4744.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber J., J. Enderich, and M. Wegner. 1998. Structural requirements for DNA binding of GCM proteins. Nucleic Acids Res. 26, 2337–2343.

    Article  PubMed  CAS  Google Scholar 

  • Sendtner M., B. Holtman, R. Kolbeck, H. Thoenen, and Y.A. Barde. 1992. Brain derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature, 360, 757–759.

    Article  PubMed  CAS  Google Scholar 

  • Shah, N.M., M.A. Marchionni, I. Isaacs, P. Stroobant, and D.J. Anderson. 1994. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349–360

    Article  PubMed  CAS  Google Scholar 

  • Spencer Smith, D. 1982. The structure of insect muscles. In Insect ultrastructure. King and Akai eds. (Plenum Press, New York and London). Vol. II, pp. 111–150

    Google Scholar 

  • Tepass U., L. Fessler, A. Aziz, and V. Hartenstein. 1994. Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120, 1829–1837.

    PubMed  CAS  Google Scholar 

  • Vincent S., XL. Vonesch, and A. Giangrande. 1996. glidedirects glial fate commitment and cell fate switch between neurons and glia. Development 122, 131–139.

    PubMed  CAS  Google Scholar 

  • Xiong, W.C. and C. Montell. 1995. Defective glia induce neuronal apoptosis in the rep visual system of Drosophila. Neuron 14, 581–590.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, W.-C., H. Okano, N.H. Patel, J.A., C. Blendy, and Montell. 1994. repocodes a glial-specific homeo domain protein required in the Drosophilanervous system. Genes and Dev. 8, 981–994.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, A.A. et al. (1999). Role and Mechanism of Action of Glial Cell Deficient/Glial Cell Missing (Glide/Gcm), The Fly Glial Promoting Factor. In: Matsas, R., Tsacopoulos, M. (eds) The Functional Roles of Glial Cells in Health and Disease. Advances in Experimental Medicine and Biology, vol 468. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4685-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4685-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7121-2

  • Online ISBN: 978-1-4615-4685-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics