Advertisement

Use of Pyrophosphate to Extract Extra- and Intracellular Enzymes from a Compost of Municipal Solid Wastes

  • J. C. Rad
  • M. Navarro-González
  • S. González-Carcedo

Abstract

The agronomic utilization of organic wastes such as sewage sludge or municipal solid waste composts may be an important way to recycle nutrient elements and to increase the fertility of soils. The application of organic wastes improves soil structure (Pagliai and De Nobili, 1993) and increases soil microbial biomass (Perucci, 1990, 1992) and the levels of enzymatic activities (Giusquiani et al., 1995; Serra-Wittling et al., 1996). In general, higher activities were found in organic amendments than in soils, reflecting the higher microbial activity of the compost compared to soil (Martens et al., 1992).

Keywords

Sewage Sludge Municipal Solid Waste Extracellular Enzyme Sodium Pyrophosphate Municipal Solid Waste Compost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, S. A. and M. M. Mortland, 1990. Enzyme Interactions with Clays and Clay-Organic Matter Complexes. In: J.-M. Bollag and G. Stotzky (Eds). Soil Biochemistry, Vol. VI. Marcel Dekker, New York, pp. 1–28.Google Scholar
  2. Bretaudiere, J. P. and T. Spillman, 1984. Alkaline Phosphatases. In: H. U. Bergmeyer, J. Bergmeyer and M. Graßl (Eds). Methods of Enzymatic Analysis, Vol. IV. Verlag Chemie, Weinheim (Germany), pp. 75–92.Google Scholar
  3. Burns, R. G., 1983. Extracellular Enzyme-Substrate Interactions in Soil. In: J. H. Slater, R. Wittembury and J. W. T. Wimpenny (Eds). Microbes in Their Natural Environment. Cambridge University Press, London, pp. 249–298.Google Scholar
  4. Coughlan, M. P. and L. G. Ljungdahl, 1988. Comparative Biochemistry of Fungal and Bacterial Cellulolytic Enzyme Systems. In: J. P. Aubert, P. Begin and J. Millet (Eds). Biochemistry and Genetics of Cellulose Degradation. Academic Press, New York. pp. 11–30.Google Scholar
  5. Foster, J. C., W. Zech and E. Würdiger, 1993. Comparison of chemical and microbiological methods for the characterization of the maturity of composts from contrasting sources. Biol. Fertil. Soils, 16,93–99.CrossRefGoogle Scholar
  6. García, C., T. Hernandez, F. Costa, B. Ceccanti and C. Ciardi, 1992. Changes in ATP content, enzyme activity and inorganic nitrogen species during composting of organic wastes. Can. J. Soil Sci., 72, 243–253.CrossRefGoogle Scholar
  7. Garcfa, C., A. Roldan and T. Hernandez, 1997. Changes in microbial activity after abandonment of cultivation in a Semiarid Mediterranean environment. J. Environ. Qual., 26, 285–291.Google Scholar
  8. Giusquiani, P. L., M. Pagliai, G. Gigliotti, D. Businelli and A. Benetti, 1995. Urban waste compost: Effect on physical, chemical and biochemical soil properties. J. Environ. Qual., 24, 175–182.CrossRefGoogle Scholar
  9. González-Vila, F. J. and F. Martin, 1985. Chemical structural characteristics of humic acids extracted from composted municipal refuse. Agric. Ecosyst. Environ., 14,267–278.CrossRefGoogle Scholar
  10. Hayano, K. and A. Katami, 1977. Extraction of ß-glucosidase activity from pea field soil. Soil Biol. Biochem., 9, 349–351.CrossRefGoogle Scholar
  11. He, X. T., S. J. Traina and T. J. Logan, 1992. Chemical properties of municipal solid waste composts. J. Environ. Qual., 21, 318–329.CrossRefGoogle Scholar
  12. Herrmann, F. R. and J. R. Shann, 1993. Enzyme activities as indicators of municipal solid waste compost maturity. Compost Sei. Utilization, 1,54–63.Google Scholar
  13. Inbar, Y., Y. Chen, and Y. Hadar, 1990. Humic substances formed during the composting of organic matter. Soil Sci. Soc. Am. I, 54, 1316–1323.CrossRefGoogle Scholar
  14. IUPAC, Commission on Biotechnology, 1984. Measurement of Cellulase Activities. In: T. K. Goshe (Ed). Methods of Enzymology. Indian Institute of Technology, New Delhi, India.Google Scholar
  15. Lerch, R. N., K. A. Barbarick, P. Azari, L. E. Sommers and D. G. Westfall, 1993. Sewage sludge proteins: I. Extraction methodology. J. Environ. Qual., 22, 620–624.CrossRefGoogle Scholar
  16. Lowry, O. H., N. J. Rosebrough, A. L. Farr and R. J. Randall, 1951. Protein measurement with the Folin phenol reagent. J. Biol. Biochem., 193, 265–275.Google Scholar
  17. Martens, D. A., J. B. Johanson, and W. T. J. Frankenberger, 1992. Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci., 153, 53–61.CrossRefGoogle Scholar
  18. Moss, D. W., 1984. Acid Phosphatases. In: H. U. Bergmeyer, J. Bergmeyer and M. Graßl (Eds). Methods of Enzymatic Analysis, Vol. IV. Verlag Chemie, Weinheim (Germany), pp. 92–106.Google Scholar
  19. McClaugherty, C. A. and A. E. Linkins, 1988. Extractability of cellulases in forest litter and soil. Biol. Fertil. Soils, 6, 322–327.CrossRefGoogle Scholar
  20. Nannipieri, P., B. Ceccanti, D. Bianchi and M. Bonmati, 1985. Fractionation of hydrolase-humus complexes by gel chromatography. Biol. Fert. Soils, 1,25–29.CrossRefGoogle Scholar
  21. Nannipieri, P., B. Ceccanti, S. Cervelli and E. Matarese, 1980. Extraction of phosphatase, urease, proteases, organic carbon and nitrogen from soil. Soil Sci. Soc. Am. 1, 44, 1011–1016.CrossRefGoogle Scholar
  22. Nannipieri, P., B. Ceccanti, S. Cervelli and P. Sequi, 1974. Use of 0.1 M pyrophosphate to extract urease from a podzol. Soil Biol. Biochem., 6,359–362.CrossRefGoogle Scholar
  23. Nannipieri, P., B. Ceccanti, C. Conti and D. Bianchi, 1982. Hydrolases extracted from soil: Their properties and activities. Soil Biol. Biochem., 14, 257–263.CrossRefGoogle Scholar
  24. Nelson, N., 1944. A photometric adaptation of the Somogyi method for determination of glucose. J. Biol. Biochem., 153, 375–380.Google Scholar
  25. Pagliai, M. and M. De Nobili, 1993. Relationships between soil porosity, root development and soil enzyme activity in cultivated soils. Geoderma, 56,243–256.CrossRefGoogle Scholar
  26. Pérez-Mateos, M., S. Gonzâlez-Carcedo and M. D. Busto-Nńñez, 1988. Extraction of catalase from soil. Soil Sci. Soc. Am. J., 52,408–411.CrossRefGoogle Scholar
  27. Perucci, P., 1990. Effect of the addition of municipal solid-waste compost on microbial biomass and enzyme activities in soil. Biol. Fertil. Soils, 10,221–226.Google Scholar
  28. Perucci, P., 1992. Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biol. Fertil. Soils, 14, 54–60.CrossRefGoogle Scholar
  29. Rad, J. C. and S. González-Carcedo, 1995. Different location of acid and alkaline phosphatases extracted from a compost of urban refuse. In: M. De Bertoldi, P. Sequi, B. Lemmes and T. Papi (Eds). The Science of Composting, Vol.1. Blackie A&P, London, pp. 286–293.Google Scholar
  30. Sarkar, J. M., A. Leonowicz and J.-M. Bollag, 1989. Immobilization of enzymes on clay and soils. Soil Biol. Biochem., 21, 223–230.CrossRefGoogle Scholar
  31. Serra-Wittling, C, S. Houot and E. Barriuso, 1995. Soil enzymatic response to addition of municipal solid-waste compost. Biol. Fertil. Soils, 20, 226–236.CrossRefGoogle Scholar
  32. Serra-Wittling, C, S. Houot and E. Barriuso, 1996. Modification of soil water retention and biological properties by municipal solid waste compost. Compost Sci. Utilization, 4,44–52.Google Scholar
  33. Sinsabaugh, R. L., R. K. Antibus and A. E. Linkins, 1991. An enzymic approach to the analysis of microbial activity during plant litter decomposition. Agric. Ecosyst. Environ., 34, 43–54.CrossRefGoogle Scholar
  34. Tabatabai, M. A. and M. Fu, 1992. Extraction of Enzymes from Soils. In: G. Stotzky and J.-M. Bollag (Eds). Soil Biochemistry, Vol. VI. Marcel Dekker, New York, pp. 197–227.Google Scholar
  35. Walter, H. E., 1984. Method with Haemoglobin, Casein and Azocoll as Substrate. In: H. U. Bergmeyer, J. Bergmeyer and M. Graßl (Eds). Methods of Enzymatic Analysis., Vol. V. Verlag Chemie, Weinheim (FRG), pp. 270–277.Google Scholar
  36. Wirth, S. J., 1992. Detection of soil polysaccharide endo-hydrolase activity profiles after gel permeation chromatography. Soil Biol. Biochem., 24, 1185–1188.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • J. C. Rad
    • 1
  • M. Navarro-González
    • 1
  • S. González-Carcedo
    • 1
  1. 1.Laboratory of Pedology & Agricultural Sciences. Faculty of Food Technology & ChemistryUniversity of BurgosBurgos. CASTILESpain

Personalised recommendations