Role of Proteins in the Adhesion of Azospirillum Brasilense to Model Substrata

  • Y. F. Dufrêne
  • C. J. -P. Boonart
  • P. G. Rouxhet


In the natural environment, microbial cells adhere to a large variety of solid surfaces, from inanimate materials to living tissues (Savage and Fletcher, 1985; Characklis and Marshall, 1990; Marshall, 1991). In aquatic habitats (e.g. streams, lakes, oceans), microorganisms accumulate on living organisms, suspended particles, rocks and sediments. In many instances, these surfaces are rapidly colonized by bacteria and biofilms are formed as a result of cell multiplication and production of extracellular substances. Soil is undoubtedly the most complex microbial habitat (Stotzky, 1985) because of the high variability of the composition and size of solid constituents, the amount of water, nutrients and gases, and the physicochemical characteristics (e.g. pH, Eh, ionic strength). Soil particles that are colonized by bacteria are often coated by clay minerals, hydrous metal oxides, and organic matter. Clay minerals, and surfaces in general, may affect microbial activity in different ways, e.g., by modifying the physicochemical characteristics of the microbial habitat (Filip and Hattori, 1984; Rouxhet and Mozes, 1990; Mozes and Rouxhet, 1991, 1992). In the environment of plant roots (rhizosphere), bacteria benefit from root exudates as carbon and energy sources and, in turn, may promote plant growth by nitrogen fixation and production of various substances (Pueppke and Kluepfel, 1985).


Bacterial Adhesion Demineralized Water Wheat Root Cell Surface Hydrophobicity Adhesion Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achouak, W., F. Thomas and T. Heulin, 1994. Physico-chemical surface properties of rhizobacteria and their adhesion to rice roots. Colloids Surfaces B: Biointerfaces, 3,131–137.CrossRefGoogle Scholar
  2. Bashan, Y. and H. Levanony, 1988. Active attachment of Azospirillum brasilense Cd to quartz sand and to a light-textured soil by protein bridging. J. Gen. Microbiol., 134, 2269–2279.Google Scholar
  3. Bashan, Y., H. Levanony and E. Klein, 1986. Evidence for a weak active external adsorption of Azospirillum brasilense Cd to wheat roots. J. Gen. Microbiol., 132, 3069–3073.Google Scholar
  4. Bashan, Y., G. Mitiku, R.E. Whitmoyer and H. Levanony, 1991. Evidence that fibrillar anchoring is essential for Azospirillum brasilense Cd attachment to sand. Plant and Soil, 132,73–83.CrossRefGoogle Scholar
  5. Busscher, H.J., A.H. Weerkamp, H.C. van der Mei, A.W.J. van Pelt, H.P. de Jong and J. Arends, 1984. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. Environ. Microbiol., 48,980–983.Google Scholar
  6. Characklis, W.G. and K.C. Marshall (Editors), 1990. Biofilms. Wiley-Interscience, New York.Google Scholar
  7. Croes, C.L., S. Moens, E. van Bastelaere, J. Vanderleyden and K.W. Michiels, 1993. The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J. Gen. Microbiol., 139, 2261–2269.Google Scholar
  8. Del Gallo, M., M. Negi and C.A. Neyra, 1989. Calcofluor-and lectin-binding exocellular polysaccharides of Azospirillum brasilense and Azospirillum lipoferum. J. Bacteriol, 171, 3504–3510.Google Scholar
  9. Dewez, J.-L., Y.-J. Schneider and P.G. Rouxhet, 1996. Coupled influence of substratum hydrophilicity and surfactant on epithelial cell adhesion. J. Biomed. Mater. Res., 30, 373–383.CrossRefGoogle Scholar
  10. Dufrêne, Y.F. and P.G. Rouxhet, 1996. Surface composition, surface properties and adhesiveness of Azospirillum brasilense — variation during growth. Can. J. Microbiol., 42, 548–556.CrossRefGoogle Scholar
  11. Dufrêne, Y.F., H. Vermeiren, J. Vanderleyden and P.G. Rouxhet, 1996a. Direct evidence for the involvement of extracellular proteins in the adhesion of Azospirillum brasilense. Microbiology, 142, 855–865.CrossRefGoogle Scholar
  12. Dufrêne, Y.F., C.J.-P. Boonaert and P.G. Rouxhet, 1996b. Adhesion of Azospirillum brasilense: role of proteins at the cell-support interface. Colloids Surfaces B: Biointerfaces, 7, 113–128.CrossRefGoogle Scholar
  13. Dufrêne, Y.F., V.B. Wiertz and P.G. Rouxhet, 1996c. Adhesion of Azospirillum brasilense to polystyrene: influence of ionic strength through protein adsorption. Biofouling, 9,307–315.CrossRefGoogle Scholar
  14. Eyers, M., J. Vanderleyden and A. Van Gool, 1988. Attachment of Azospirillum to isolated plant cells. FEMS Microbiol. Lett., 49,435–439.CrossRefGoogle Scholar
  15. Filip, Z. and T. Hattori, 1984. Utilization of substrates and transformation of substrata. In: K.C. Marshall (Editor). Microbial Adhesion and Aggregation. Springer Verlag, Heidelberg, Berlin, pp. 251–288.CrossRefGoogle Scholar
  16. Gafny, R., Y. Okon and Y. Kapulnik, 1986. Adsorption of Azospirillum brasilense to corn roots. Soil Biol. Biochem., 18,69–75.CrossRefGoogle Scholar
  17. Irvin, R.T., 1990. Hydrophobicity of proteins and bacterial fimbriae. In: R.J. Doyle and M. Rosenberg (Editors). Microbial cell surface hydrophobicity. American Society for Microbiology, Washington, pp. 137–177.Google Scholar
  18. Madi, L., M. Kessel, E. Sadovnik and Y. Henis, 1988. Electron microscopic studies of aggregation and pellicle formation in Azospirillum spp. Plant and Soil, 109, 115–121.Google Scholar
  19. Marshall, K.C., 1991. The importance of studying microbial cell surfaces. In: N. Mozes, P.S. Handley, H.J. Busscher and P.G. Rouxhet (Editors). Microbial Cell Surface Analysis: Structural and Physicochemical Methods. VCH Publishers, New York, pp. 3–19.Google Scholar
  20. Michiels, K.W., C.L. Croes and J. Vanderleyden, 1991. Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol., 137, 2241–2246.Google Scholar
  21. Michiels, K., J. Vanderleyden and C. Elmerich, 1994. Genetics and molecular biology of Azospirillum. In: Y. Okon (Editor). Azospirillum /Plant Associations. CRC Press Inc., Boca Raton, FI., pp. 41–56.Google Scholar
  22. Mozes, N. and P.G. Rouxhet, 1991. Effects of the microenvironment on metabolic activity of immobilized yeast cells. Med. Fac. Landbouww. Rijksuniv. Gent, 56, 1761–1768.Google Scholar
  23. Mozes, N. and P.G. Rouxhet, 1992. Influence of surfaces on microbial activity. In: L.F. Melo, T.R. Bott, M. Fletcher and B. Capdeville (Editors). Biofilms — Science and technology. Kluwer Academic Publishers, Dordrecht, pp. 125–136.CrossRefGoogle Scholar
  24. Okon, Y. (Editor), 1994. Azospirillum /Plant Associations. CRC Press Inc., Boca Raton, Fl.Google Scholar
  25. Pueppke, S.G. and D.A. Kluepfel, 1985. Responses of plant cells to adsorbed bacteria. In: D.C. Savage and M. Fletcher (Editors). Bacterial Adhesion. Plenum Press, London, pp. 401–435.CrossRefGoogle Scholar
  26. Ratner, B.D. and B.J. McElroy, 1986. Electron spectroscopy for chemical analysis: applications in the biomedical sciences. In: R.M. Gendreau (Editor). Spectroscopy in the Biomedical Sciences. CRC Press, Boca Raton, FI., pp. 107–140.Google Scholar
  27. Rijnaarts, H.H.M., W. Norde, E.J. Bouwer, J. Lyklema and A.J.B. Zehnder, 1995. Reversibility and mechanism of bacterial adhesion. Colloids Surfaces B: Biointerfaces, 4, 5–22.CrossRefGoogle Scholar
  28. Rouxhet, P.G. and N. Mozes, 1990. The micro-environment of immobilized cells: critical assessment of the influence of surfaces and local concentrations. In: J.A.M. de Bont, J. Visser, B. Mattiasson and J. Tramper (Editors). Proc. Int. Symp. on Physiology and Immobilized Cells. Elsevier Science Publishers, Amsterdam, pp. 343–354.Google Scholar
  29. Rouxhet, P.G. and M.J. Genet, 1991. Chemical composition of the microbial cell surface by X-ray photoelectron spectroscopy. In: N. Mozes, P.S. Handley, H.J. Busscher and P.G. Rouxhet (Editors). Microbial Cell Surface Analysis: Structural and Physicochemical Methods. VCH Publishers, New York, pp. 173–220.Google Scholar
  30. Rutter, P.R. and B. Vincent, 1980. The adhesion of micro-organisms to surfaces: physico-chemical aspects. In: R.C.W. Berkeley, J.M. Lynch, J. Melling, P.R. Rutter and B. Vincent (Editors). Microbial Adhesion to Surfaces. Ellis Horwood Ltd, Chichester, pp. 79–92.Google Scholar
  31. Savage, D.C. and M. Fletcher (Editors), 1985. Bacterial adhesion. Plenum Press, London.Google Scholar
  32. Stotzky, G., 1985. Mechanisms of adhesion to clays, with reference to soil systems. In: D.C. Savage and M. Fletcher (Editors). Bacterial adhesion. Plenum Press, London, pp. 195–253.Google Scholar
  33. van Loosdrecht, M.C.M., J. Lyklema, W. Norde, G. Schraa and A.J.B. Zehnder, 1987. Electrophoretic mobility and hydrophobicity as a measure to predict initial steps of bacterial adhesion. Appl. Environ. Microbiol., 53, 1898–1901.Google Scholar
  34. van Loosdrecht, M.C.M., W. Norde and A.J.B. Zehnder, 1989. Bacterial adhesion: a physicochemical approach. Microb. Ecol., 17, 1–15.CrossRefGoogle Scholar
  35. van Loosdrecht, M.C.M., J. Lyklema, W. Norde, J. Lyklema and A.J.B. Zehnder, 1990. Hydrophobic and electrostatic parameters in bacterial adhesion. Aquat. Sci., 52, 103–114.CrossRefGoogle Scholar
  36. Vaudaux, P.E., F.A. Waldvogel, J.J. Morgenthaler and U.E. Nydegger, 1984. Adsorption of fibronectin onto polymethylmethacrylate and promotion of Staphylococcus aureus adherence. Infect. Immun., 45,768–774.Google Scholar
  37. Yagoda-Shagam, J., L.L. Barton, W.P. Reed and R. Chiovetti, 1988. Fluorescein isothiocyanate-labeled lectin analysis of the surface of the nitrogen-fixing bacterium Azospirillum brasilense by flow cytometry. Appl. Environ. Microbiol., 54,1831–1837.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Y. F. Dufrêne
    • 1
  • C. J. -P. Boonart
    • 1
  • P. G. Rouxhet
    • 1
  1. 1.Unité de Chimie des interfaces, Université catholique deLouvain-la-NeuveBelgium

Personalised recommendations