Skip to main content

Abstract

The decomposition of organic matter is a biological process that depends on climatic and edaphic factors. Numerous studies have been done to determine the effect of environmental factors such as temperature (Kirschbaum, 1995), N availability (Mary et al, 1996), plant residue content (Reinertsen et al, 1984), water potential (Sommers et al, 1980) and oxygen concentration (Parr and Reuszer, 1959). Little information is available about the effects that different degrees of contact between soil and plant residues have on the decomposition of organic materials. This contact depends mainly on the physical and chemical characteristics of the residue and the physical properties (texture, structure, water content) of the soil. Previous studies have investigated the effect of residue particle size (Bremer et al, 1991; Jensen, 1994; Angers and Recous, 1997) and soil texture (Hassink 1992; Scott et al, 1996) on C decomposition, but further investigations of the interaction between these factors should improve the description of plant residue decomposition in C-N models. For instance, reducing the particle size of residues of high C:N ratio such as mature cereals, enhanced short-term C decomposition while it has nil or a reverse effect for residues of low C:N ratio (Bremer et al. 1991; Jensen, 1994, Ambus and Jensen, 1997; Angers and Recous, 1997). The main hypotheses invoked to explain these observations were that decreasing particle size of residues of high C:N ratio enhanced the availability of soil N to decomposing microorganisms, while for low C:N ratio residues, increasing contact enhanced the protection of C against biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambus P & Jensen E S 1997 Nitrogen mineralization and denitrification as influenced by crop residue particle size. Plant Soil, 197, 261–270.

    Article  CAS  Google Scholar 

  • Angers, D. and S. Recous, 1997. Decomposition of wheat straw and rye in soil as affected by particle size. Plant Soil, 189, 197–203.

    Article  CAS  Google Scholar 

  • Bremer, E., W. van Houtum and C. van Kessel, 1991. Carbon dioxide evolution from wheat and lentil residues as affected by grinding, added nitrogen, and the absence of soil. Biol. Fert. Soils, 11, 221–227.

    Article  Google Scholar 

  • Christensen, B. T., 1985. Wheat and barley straw decomposition under field conditions: effect of soil type and plant cover on weight loss, nitrogen and potassium content. Soil Biol. Biochem., 17, 691–697.

    Article  Google Scholar 

  • Freijer, J. I. and W. Bouten, 1991. A comparison of field methods for measuring soil carbon dioxide evolution: Experiments and simulation. Plant Soil, 135, 133–142.

    Article  CAS  Google Scholar 

  • Hassink, J. 1992. Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biol. Fertil. Soils, 14, 126–134.

    Article  CAS  Google Scholar 

  • Jensen, E. G., 1994. Mineralization-Immobilization of nitrogen in soil amended with low C:N ratio plant residues with different particle sizes. Soil Biol. Bioch., 26, 519–521.

    Article  Google Scholar 

  • Kirschbaum, M. U. F., 1995. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic storage. Soil Biol. Bioch., 27, 753–760.

    Article  CAS  Google Scholar 

  • Mary, B., S. Recous, D. Darwis and D. Robin, 1996. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil, 181, 71–82

    Article  CAS  Google Scholar 

  • Monnier, G., P. Stengel and J.C. Fies, 1973. Une méthode de mesure de la densité apparente de petits agglomérats terreux. Application à l’analyse des systèmes de porosité du sol. Ann. Agron., 24, 533–545.

    Google Scholar 

  • Parr, J. F. and H. W. Reuszer, 1959. Organic matter decomposition as influenced by oxygen level and method of application to soil. Soil Sci. Soc. Proc, 214–216.

    Google Scholar 

  • Recous, S., D. Robin, D. Darwis and B. Mary, 1995. Soil inorganic N availability: effect on maize residue decomposition. Soil Biol. Bioch., 27, 1529–1538.

    Article  CAS  Google Scholar 

  • Reinertsen, S. A., L. F. Elliot, V. Cochran and G. S. Campbell, 1984. The role of available C and N in determining the rate of wheat straw decomposition. Soil Biol. Bioch., 16, 459–464.

    Article  CAS  Google Scholar 

  • Richard, G. and J. Guérif, 1988. Influence of aeration conditions in the seedbed on sugar beet seed germination: experimental study and model. Proc. 11 international conference ISTRO, Edinburgh, U.K., 103–108.

    Google Scholar 

  • Richard, G. and I. Guérif, 1988. Modélisation des transferts gazeux dans le lit de semences: application au diagnostic des conditions d’hypoxie des semences de betterave sucrière (Beta vulgaris L.) pendant la germination. I. Présentation du modèle. Agronomie, 8, 539–547.

    Article  Google Scholar 

  • Scott, N. A., C. V. Cole, E. T. Elliott and S. A. Huffman, 1996. Soil texture control on decomposition and soil organic matter dynamics. Soil Sci. Soc. Am. J., 60, 1102–1109.

    Article  CAS  Google Scholar 

  • Sommers, L. E., C. M. Gilmour, R. E. Wildung and S. M. Beck, 1980. The effect of water potential on decomposition processes in soil. In Water potential relation in soil Microbiology, SSSA Spec. publ. n° 9,. ASA, Madison, Wisconsin, pp. 97–117.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fruit, L., Recous, S., Richard, G. (1999). Plant Residue Decomposition: Effect of Soil Porosity and Particle Size. In: Berthelin, J., Huang, P.M., Bollag, JM., Andreux, F. (eds) Effect of Mineral-Organic-Microorganism Interactions on Soil and Freshwater Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4683-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4683-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7120-5

  • Online ISBN: 978-1-4615-4683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics