Advertisement

Application of Organic Geochemistry Techniques to Environmental Problems.

  • P. Faure
  • P. Landais
  • M. Elie
  • M. Kruge
  • E. Langlois
  • O. Ruau

Abstract

A major concern in environmental studies is the estimation of the impact of anthropogenic activities on natural systems. Organic compounds are among the more abundant and the more various pollutants. Because they can display significant adsorption capacities and thus transport other (non organic) pollutants, they should be carefully analyzed. The oil industry has developed advanced organic geochemical techniques in order to improve knowledge of the structure and evolution of natural organic matter. Most of the advanced techniques that are required for the characterization of organic compounds can be directly used in environmental studies. Three major problems regarding organic pollutant impacts on the environment must be addressed: (i) the characterization of the source of the organic pollutants, (ii) their migration and dispersion in water, soils and sediments and (iii) their stability during degradation processes such as biodegradation, oxidation, etc. Those problems require an approach similar to that frequently used in the petroleum field. In petroleum exploration, it is important to characterize the source rocks for oil, to study its migration and dispersion in the reservoir rock and to estimate the changes induced by different alterations. The aim of this paper is to present applications of oil exploration analytical techniques to environmental problems.

Keywords

Source Rock River Sediment Coal Particle Coke Residue Unresolved Complex Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellamy, L.J., 1975. The Infrared Spectra of Complex Molecules. Third Edition, Chapman and Hall, Ltd. Xondon.CrossRefGoogle Scholar
  2. Bray E.E. and E.D. Evans, 1961. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta, 22, 2–15.CrossRefGoogle Scholar
  3. Durand B. and J.C. Monin, 1980. Elemental analysis of kerogens (C, H, O, N, S, Fe). In: B. Dyrabd (Editor), Kerogen.Technip, Paris, pp. 113–142.Google Scholar
  4. Giraud A., 1970. Application of pyrolysis and gas chromatography to the geochemical characterisation of kerogen in sedimentary rocks. Bull Amer. Assoc. Petrol. Geol., 54, 439–455.Google Scholar
  5. Gough M.A. and S.J. Rowland, 1990. Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature, 344, 648–650.CrossRefGoogle Scholar
  6. Jakab E., Y. Yongseung, and H.L.C. Meuzelaar, 1989. Effects of weathering on the molecular structure of coal. In: C.R. Nelson (Editor), Chemistry of Coal Weathering, pp 61–82.Google Scholar
  7. Landais P. and A. Rochdi, 1990. Reliability of semiquantitative data extracted from transmission microscopy Fourier transform infrared spectra of coal. Energy and fuels, 4, 290–295.CrossRefGoogle Scholar
  8. Larter S.R. and A.G. Douglas, 1980. A pyrolysis-gas chromatography method for kerogen typing. In: AG. Douglas and J.R. Maxwell (Editors), Advances in Organic Geochemistry, Pergamon, London, 579–583.Google Scholar
  9. Pierrisnard F., 1996. Impact de l’amendement des boues résiduaires de la ville de Marseille sur des sols à vocations agricole: comportement du Cd, Cr, Cu, Ni, Pb, Zn, des hydrocarbures et des composés polaires. Thèse de l’université Aix Marseille III.Google Scholar
  10. Painter P.C., M.M. Coleman., R. W. Snyder., O. Mahajan., M. Komatsu and P.L., Walker JR., 1981. Low temperature air oxidation of caking coals: Fourier transform infrared studies. Appl.Spectroscopy, 35, 106–110.CrossRefGoogle Scholar
  11. Ruau O., L. Mansuy. and P. Landais, 1995. Mise au point d’une nouvelle technique de préparation de la matière organique pour analyse en microspectroscopie infrarouge en mode transmission. CR. Acad. Sci. Paris, t. 321, série II a, 201–208.Google Scholar
  12. Saiz Jimenez C. and J.W. De Leeuw., 1986. Chemical characterization of soil organic matter fractions by analytical Pyrolysis-Gaz Chromatography-Mass Spectrometry. Journal Analytical and Appl.Pyrolysis, 9, 99–119.CrossRefGoogle Scholar
  13. Sicre M-A, S. Peulve, A. Saliot, J.W. De Leeuw and M. Baas, 1994. Molecular characterization of the organic fraction of suspended matter in the surface waters and bottom nepheloïd layer of the Rhône delta using analytical pyrolysis, Org. Geochem., Vol 21, No 1, 11–26.CrossRefGoogle Scholar
  14. Tissot B. P. and D.H. Weite, 1984. Petroleum Formation and Occurence. 2nd edition. Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • P. Faure
    • 1
  • P. Landais
    • 1
  • M. Elie
    • 1
  • M. Kruge
    • 1
  • E. Langlois
    • 1
  • O. Ruau
    • 1
  1. 1.C.N.R.S. - C.R.E.G.U.Vandœuvre-lès-Nancy CedexFrance

Personalised recommendations