Sorption Mechanisms at the Solid-Water Interface

  • Philippe Behra
  • Jamaâ Douch
  • Frank Binde

Abstract

Soils, solid phases or colloids have been for a long time considered as efficient barriers to trap pollutants during their migration. Meanwhile, this statement has been more and more questioned, and it becomes necessary not only to protect the resource « water » but also to prevent all deterioration of its quality. The cycling of water is a complex system which has to be better understood in order to predict the environmental impact of key parameters on the different compartments of the natural system.

Keywords

Clay Surfactant Sulphide Geochemistry Calcite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behra, Ph., 1994. Scale effects in the transport of contaminants in natural media. In: Chemistry of Aquatic Systems: Local and Global Perspectives. G. Bidoglio and W. Stumm (Editors). Kluwer Academic Publishers, Dortrecht, 433–463.Google Scholar
  2. Bolt, G.H. (Editor), 1982. Soil Chemistry B. Physico-Chemical Models. Elsevier, Amsterdam.Google Scholar
  3. Bonnissel-Gissinger, P., M. Alnot, Ph. Behra and J.J. Ehrhardt, 1996. Sorption du mercure (II) sur de la pyrite. In: Mécanismes de Sorptions aux Interfaces Solide-Liquide. Ph. Behra and J.J. Ehrhardt (Editors). Compte-rendu des Journées Scientifiques du GDR PRACTIS 1115 (2-3 mai 1996), LCPE, Villers-lüs-Nancy, 79–84.Google Scholar
  4. Bonnissel-Gissinger, P., M. Alnot, J.J. Ehrhardt and Ph. Behra, 1998. Surface oxidation of pyrite as a function of pH. Environ. Sci. Technol. 32, 2839–2845.CrossRefGoogle Scholar
  5. Bourg, A.C.M. and P.W. Schindler, 1978. Ternary surface complexes 1. Complex formation in the system silica-Cu(II)-ethylenediamine. Chimia 32, 166–168.Google Scholar
  6. Bourg, A.C.M., S. Joss and P.W. Schindler, 1979. Ternary surface complexes 2. Complex formation in the system silica-Cu(II)-2,2’ bipyridyl. Chimia 33, 19–21.Google Scholar
  7. Cases, J.M. and F. Villiéras, 1992. Thermodynamic model of ionic and non-ionic surfactant adsorption-abstraction on heterogeneous surfaces. Langmuir 8, 1251–1264.CrossRefGoogle Scholar
  8. Charlet, L. and A. Manceau, 1993. Structure, formation and reactivity of hydrous oxide particles: Insights from X-ray absorption spectroscopy. In: Environmental Particles. J. Buffle and H.P. van Leeuwen (Editors). Vol.2. Lewis Pub., Boca Raton (Florida), 117–164.Google Scholar
  9. Davis, J.A. and D.B. Kent, 1990. Surface complexation modeling in aqueous geochemistry. In: Mineral Water Interface Geochemistry. M.F. Hochella and A.F. White (Editors). Reviews in Mineralogy, Mineralogical Society of America, Washington.Google Scholar
  10. Dzombak, D.A. and F.M.M. Morel, 1990. Surface Complexation Modeling. Hydrous Ferric Oxide. Wiley, New York.Google Scholar
  11. Farley, K.J.,D.A. Dzombak and F.M.M. Morel, 1985. A surface precipitation model of the oxide/water interface. J. Colloid Interface Sci. 106, 226.CrossRefGoogle Scholar
  12. Hiemstra, T., W.H. van Riemsdijk and G.H. Bolt, 1989a. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. I. Model description and evaluation of intrinsic reaction constants. J. Colloid Interface Sci. 133, 91.Google Scholar
  13. Hiemstra, T., J.C.M. de Wit and W.H. van Riemsdijk, 1989b. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: a new approach. II. Application to various important (hydr)oxides. J. Colloid Interface Sci. 133, 105.Google Scholar
  14. Hiemstra, T. and W.H. van Riemsdijk, 1996. A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Colloid Interface Sci. 179, 488.CrossRefGoogle Scholar
  15. James, R.O. and T.W. Healy, 1972. Adsorption of hydrolyzable metal ions at the oxide-water interface. J. Colloid Interface Sci. 40, 42.CrossRefGoogle Scholar
  16. Lecarme-Théobald, É., 1998. Comportement du tributylétain en milieu aqueux en présence d’une phase solide hététogène. Ph.D. thesis, Université Henri Poincaré, Nancy.Google Scholar
  17. Lützenkirchen, J., 1996. Description des interactions aux interfaces liquide-solide à l’aide des modèles de complexation et de précipitation de surface. Ph.D. thesis, Université Louis Pasteur, Strasbourg.Google Scholar
  18. Lützenkirchen, J., andPh. Behra, 1996. On the surface precipitation model for cation sorption at the (hydr)oxide water interface. Aquatic Geochemistry 1, 375.CrossRefGoogle Scholar
  19. Lützenkirchen, J. J.P. Lickes, S. Contreras, J. Lambert, M. Alnot, F. Dumont and Ph. Behra, 1996. Sorption du cadmium sur un sable de cristobalite: x00C8;tude par spectroscopie de surface et modélisation. In: Mécanismes de Sorptions aux Interfaces Solide-Liquide. Ph. Behra and J.J. Ehrhardt (Editors). Compte-rendu des Journées Scientifiques du GDR PRACTIS 1115 (2-3 mai 1996), LCPE, Villers-lè;s-Nancy, 74–78.Google Scholar
  20. Morel, F.M.M. and J.G. Hering, 1993. Principles and Applications of Aquatic Chemistry. 2nd edition. Wiley, New York.Google Scholar
  21. Moulin, Ch., 1996. Apport de la spectroscopie optique pour les études aux interfaces. In: Mécanismes de Sorptions aux Interfaces Solide-Liquide. Ph. Behra and J.J. Ehrhardt (Editors). Compte-rendu des Journées Scientifiques du GDR PRACTIS 1115 (2-3 mai 1996), LCPE, Villers-lè;s-Nancy, 51–57.Google Scholar
  22. Schindler, P.W. and W. Stumm, 1987. The surface chemistry of oxides, hydroxides and oxide minerals. In: Aquatic Surface Chemistry. W. Stumm (Editor). Wiley, New York.Google Scholar
  23. Sigg, L., W. Stumm, and Ph. Behra, 1994. Chimie des Milieux Aquatiques. Masson, Paris.Google Scholar
  24. Stipp, S.L.,M.F. Hochella, G.A. Parks and J.O. Leckie, 1992. Cd 2+ uptake by calcite, solid-state diffusion, and the formation of solid-solution: interface processes observed with near-surface sensitive techniques (XPS, LEED, and AES). Geochim. Cosmochim. Acta 56, 1941.Google Scholar
  25. Stumm, W., 1992. Chemistry of the Solid-Water Interface. Wiley, New York.Google Scholar
  26. Stumm, W. and J.J. Morgan, 1996. Aquatic Chemistry. 3rd edition. Wiley, New York.Google Scholar
  27. Sverjensky, D.A., 1993. Physical surface-complexation models for sorption at the mineral-water interface. Nature 364, 776.CrossRefGoogle Scholar
  28. Tiffreau, Ch.,J. Lützenkirchen and Ph. Behra, 1995. Modeling the adsorption of mercury (II) on (hydr)oxides. I. Amorphous iron oxide and α-quartz. J. Colloid Interface Sci. 172, 82–93.CrossRefGoogle Scholar
  29. Van Riemsdijk, W.H.,G.H. Bolt, L.K. Koopal and J. Blaakmeer, 1986. Electrolyte adsorption on heterogeneous surfaces: adsorption models. J. Colloid Interface Sci. 109, 219.CrossRefGoogle Scholar
  30. Westall, J.C., 1982. FITEQL 2.1: A computer program for the determination of equilibrium constants from experimental data. Rep. 94–01. Department of Chemistry, Oregon State University, Corvallis (Oregon).Google Scholar
  31. Westall, J.C., and A. Herbelin, 1994. FITEQL 3.1: A computer program for the determination of equilibrium constants from experimental data. Rep. 94–01. Department of Chemistry, Oregon State University, Corvallis (Oregon).Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Philippe Behra
    • 2
  • Jamaâ Douch
    • 1
    • 2
  • Frank Binde
    • 2
  1. 1.Department of ChemistryIbnou Zohr UniversityAgadirMorocco
  2. 2.Institut de Mécanique des FluidesUMR 7507 Université Louis PasteurStrasbourgFrance

Personalised recommendations