Multiple Peano Scannings and Multidimensional Problems

  • Roman G. Strongin
  • Yaroslav D. Sergeyev
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 45)

Abstract

We commence by recalling some properties of the Peano curve y(x) from Theorem 8.1. From (8.1.21)–(8.1.23) follows that any two points x′, x″ from the unit interval [0,1] on the x-axis have some close images y′ = y(x′), y″ = y(x″) in the hypercube
(10.1.1)
; herewith, if
$$ \left| {x' - x''} \right| \leqslant {2^{ - \left( {M + 1} \right)N,}} $$
(10.1.2)
, where M ≥ 1 is an integer, then
$$ \max \left\{ {\left| {{{y'}_j} - {{y''}_j}} \right|:1 \leqslant j \leqslant N} \right\} \leqslant {2^{ - M}}. $$
(10.1.3)

Keywords

Manifold Assure Dinate Clarification Veri 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Roman G. Strongin
    • 1
  • Yaroslav D. Sergeyev
    • 1
    • 2
  1. 1.Nizhni Novgorod State UniversityNizhni NovgorodRussia
  2. 2.Institute of Systems Analysis and Information TechnologyUniversity of CalabriaRendeItaly

Personalised recommendations