Advertisement

Biomarkers of Environmental Exposure and Multivariate Approaches for Assessment and Monitoring

  • Susan M. Cormier
  • Richard N. Racine

Abstract

This paper presents a rationale for the use of biomarkers in detecting early stages of environmental stress and describes the greater responsiveness of biomarkers to varied and multiple stressors. A set of biomarkers from different biological levels is much more desirable than a single measure. Examples of multivariate approaches for data reduction and analysis of sets of biomarkers are suggested.

Keywords

Reference Site Polluted Site Environmental Toxicology Lewis Publisher Discriminant Function Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, S. M., L. R. Shugart, G. R. Southworth and D. E. Hinton. (1990). Application of bioindicators in assessing the health of fish populations experiencing contaminant stress. In Biomarkers of environmental contamination, ed. J. F. McCarthy and L. R. Shugart, 333–353. Chelsea, MI, Lewis Publishers.Google Scholar
  2. Anderson, D. P., O. W. Dixon, J. E. Bodammer and E. F. Lizio. (1989). Suppression of antibody-producing cells in rainbow trout spleen sections exposed to copper in vitro. Journal of Aquatic Animal Health, 1, 57–61.CrossRefGoogle Scholar
  3. Arce, G. T., J. W. Allen, C. L. Doerr, E. Elmore, G. G. Hatch, M. M. Moore, Y. Sharief, D. Grunberger and S. Nesnow. (1987). Relationship between benzo(a)pyrene-DNA adduct levels and genotoxic effects in mammalian cells. Cancer Research, 47, 3388–3395.Google Scholar
  4. Ariyoshi, T., S. Shiiba, H. Hasegawa and K. Arizono. (1990). Profile of metal-binding proteins and heme oxygenase in red carp treated with heavy metals, pesticides and surfactants. Bulletin of Environmental Contamination and Toxicology, 44, 643–649.CrossRefGoogle Scholar
  5. Baumann, P. C., J. C. Harshbarger and K. J. Hartman. (1990). Relationships between liver tumors and age in brown bullhead populations from two lake Erie tributaries. The Science of the Total Environment, 94, 71–87.CrossRefGoogle Scholar
  6. Bennett, A. F. (1987). Interindividual variability: an underutilized resource. In New Directions in Physiological Ecology, eds M. E. Feder, A. F. Bennett, W. W. Burggren and R. B. Huey. Cambridge University Press, Cambridge, pp. 147–169.Google Scholar
  7. Booth, R. A. (1967). A description of the larval stages of the tomcod, Microgadus tomcod (Walbaum), with comments on its spawning ecology. Ph.D. thesis, University of Connecticut, Storrs.Google Scholar
  8. Connor, E. F. and D. Simberloff. (1986). Competition, scientific method, and null models in ecology. American Scientist, 74, 155–162.Google Scholar
  9. Cormier, S. M. and R. N. Racine. (1990). Histopathology of Atlantic Tomcod: a possible monitor of xenobiotics in Northeast tidal rivers and estuaries. In Biomarkers of environmental contamination, ed. J. F. McCarthy & L. R. Shugart, 59–71. Chelsea, MI, Lewis Publishers.Google Scholar
  10. Cormier, S. M., R. N. Racine, C. E. Smith, W. P. Dey and T. H. Peck. (1989). Hepatocellular carcinoma and fatty infiltration in the Atlantic tomcod (Microgadus tomcod) (Walbaum). Journal of Fish Disease, 12, 105–116.CrossRefGoogle Scholar
  11. Cormier, S. M., J. P. Bercz, T. Neiheisel and R. N. Racine. (1990). Biomarkers of environmental exposure: developing methods for assessment and monitoring. International Symposium on Ecological Indicators, Ft. Lauderdale, FL, 15–19 October.Google Scholar
  12. Depledge, M. H. (1990). New approaches in ecotoxicology: can interindividual physiological variability be used as a tool to investigate pollution effects? Ambio, 19, 251–252.Google Scholar
  13. Dey, W., T. Peck, C. Smith, S. Cormier and G. Kraemer. (1986). A study of the occurrence of liver cancer in Atlantic tomcod (Microgadus tomcod) from the Hudson River estuary. Final report to Hudson River Foundation, New York.Google Scholar
  14. Di Giulio, R. T., P. C. Washburn, R. J. Wenning, G. W. Winston and C. S. Jewell. (1989). Biochemical responses in aquatic animals: a review of determinant of oxidative stress. Environmental Toxicology and Chemistry, 8, 1103–1123.CrossRefGoogle Scholar
  15. Fabacher, D. L. and P. C. Baumann. (1985). Enlarged livers and hepatic microsomal mixed-function oxidase components in tumor-bearing brown bullheads from a chemically contaminated river. Environmental Toxicology and Chemistry, 4, 703–710.CrossRefGoogle Scholar
  16. Frost, T. M., S. R. Carpenter, T. K. Kratz and J. J. Magnusan. (1990). Choosing indicators of ecological condition: A compromise between sensitivity to stress and natural variability. International Symposium on Ecological Indicators. Ft. Lauderdale, FL, 15–19 October.Google Scholar
  17. Gallagher, E. P. and R. T. Di Giulio. (1989). Effects of complex waste mixtures on hepatic monooxygenase activities in brown bullheads (Ictalarus nebulosus). Environmental Pollution, 62, 113–128.CrossRefGoogle Scholar
  18. Garvey, J. S. and C. C. Chang (1981). Detection of circulating metallothionen in rats injected with zinc or cadmium. Science, 214, 805–807.CrossRefGoogle Scholar
  19. Garvey, J. S. Metallothionein: a potential biomonitor of exposure to environmental toxins. In Biomarkers of environmental contamination, ed. J. F. McCarthy and L. R. Shugart, 267–287. Chelsea, MI, Lewis Publishers.Google Scholar
  20. Gillespie, R. B. and S. I. Guttman. (1989). Effects of contaminants on the frequencies of allozymes in populations of the central stoneroller. Environmental Toxicology and Chemistry, 8, 309–317.CrossRefGoogle Scholar
  21. Green, R. H. (1979). Sampling design and statistical methods for environmental biologists. New York, J. Wiley & Sons.Google Scholar
  22. Hatch, T. F. (1962). Changing objectives in occupational health. Journal of the American Industrial Hygienics Association, 23, 1–7.CrossRefGoogle Scholar
  23. Jimenez, B. D., A. Oikari, S. M. Adams, D. E. Hinton and J. F. McCarthy. (1990). Hepatic enzymes as biomarkers: interpreting the effects of environmental, physiological and toxicological variables. In Biomarkers of environmental contamination, ed. J. F. McCarthy and L. R. Shugart, 123–142. Chelsea, MI, Lewis Publishers.Google Scholar
  24. Johnson, A. R. (1988a). Diagnostic variables as predictors of ecological risk. Environmental Management, 12, 515–523.CrossRefGoogle Scholar
  25. Johnson, A. R. (1988b). Evaluating ecosystem response to toxicant stress: a state space approach. In Aquatic toxicology and hazard assessment, vol. 10, ASTM STP 971, ed. W. J. Adams, G. A. Chapman and W. G. Landis, 275–285. Philadelphia, American Society for Testing and Materials.CrossRefGoogle Scholar
  26. Klecka, W. R. (1980). Discriminant analysis. Beverly Hills, Sage Publications.Google Scholar
  27. Krahn, M. M., L. D. Rhodes, M. S. Myers, L. K. Moore, W. D. MacLeod and D. C. Malins. (1986). Associations between metabolites of aromatic compounds in bile and the occurrence of hepatic lesions in English sole (Parophrys vetulus) from Puget Sound, Washington. Archives of Environmental Contamination and Toxicology, 15, 61–67.CrossRefGoogle Scholar
  28. Kurelec, B., A. Garg, S. Krea, M. Chacko and R. C. Gupta. (1989). Natural environment surpasses polluted environment in inducing DNA damage in fish. Carcinogenesis, 10, 1337–1339.CrossRefGoogle Scholar
  29. Lech, J. J., M. J. Vodnicnik and C. R. Elcombe. (1982). Induction of monooxygenase activity in fish. In Aquatic toxicology, ed. L. J. Weber, 107–148. New York, Raven Press.Google Scholar
  30. Lindstrom-Seppa, P. and A. Oikari. (1990). Biotransformation activities of feral fish in waters receiving bleached pulp mill effluents. Experimental Toxicology and Chemistry, 9, 1415–1424.CrossRefGoogle Scholar
  31. Lowell, J. L. and Y. J. E. Casida. (1984). Interaction of lindane, toxaphene and cyclodienes with brain-specific t-butylbicyclo-phosphorothionate receptor. Life Science, 35, 171–178.CrossRefGoogle Scholar
  32. Maccubbin, A. E., J. J. Black and B. P. Dunn. (1990). 32P-postlabeling detection of DNA adducts in fish from chemically contaminated waterways. The Science of the Total Environment, 94, 89–104.CrossRefGoogle Scholar
  33. Malins, D. C., B. B. McCain, J. T. Landahl, M. S. Myers, M. M. Krahn, D. W. Brown, S.-L. Chan and W. T. Roubal. (1988). Neoplastic and other diseases in fish in relation to toxic chemicals: an overview. Aquatic Toxicology, 11, 43–67.CrossRefGoogle Scholar
  34. Mardia, K. V. (1977). Mahalanobis distances and angles. In Multivariate analysis IV, ed. P. R. Krishnaiah. New York, North-Holland Publishing Co., pp. 495–511.Google Scholar
  35. McCarthy, J. F. and L. R. Shugart. (1990). Biomarkers of environmental contamination. Chelsea, MI, Lewis Publishers.Google Scholar
  36. Melancon, M. J., S. E. Yeo and J. J. Lech. (1987). Induction of hepatic microsomal monooxygenase activity in fish by exposure to river water. Environmental Toxicology and Chemistry, 6, 127–135.CrossRefGoogle Scholar
  37. Muir, D. C. G., A. L. Yarechewski, D. A. Metner, W. L. Lockhart, G. R. B. Webster and K. J. Freisen. (1990). Dietary accumulation and sustained hepatic mixed function oxidase enzyme induction by 2,3,4,7,8-pentachlorodibenzofuran in rainbow trout. Experimental Toxicology and Chemistry, 9, 1463–1472.CrossRefGoogle Scholar
  38. Murphy, S. D., L. G. Costa and B. W. Schwab. (1982). Pesticide interactions and development of tolerance. In Effects of chronic exposure to pesticides on animal systems, ed. J. E. Chambers and J. D. Yarbrough. New York, Raven Press. pp. 227–242.Google Scholar
  39. Ohio Environmental Protection Agency. (1990). The use of biocriteria in the Ohio EPA surface water monitoring and assessment program. Columbus, Ohio, Division of water quality planning and assessment.Google Scholar
  40. Orians, G. H. (1975). Diversity, stability and maturity in natural ecosystems. In Unifying concepts in ecology, ed. W. H. van Dobben and R. H. Lowe-McConnell, The Hague, Junk. 139–150.CrossRefGoogle Scholar
  41. Payne, J. F., L. L. Fancey, A. D. Rahimtula and E. L. Porter. (1987). Review and perspective on the use of mixed-function oxygenase enzymes in biological monitoring. Comparative Biochemistry and Physiology, 86C, 233–245.Google Scholar
  42. Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307, 321–326.CrossRefGoogle Scholar
  43. Rattner, B. A., D. J. Hoffman and C. M. Marn. (1989). Use of mixed-function oxygenases to monitor contaminant exposure in wildlife. Environmental Toxicology and Chemistry, 8, 1093–1102.CrossRefGoogle Scholar
  44. Rexstad, E. A., D. D. Miller, C. H. Flather, E. M. Anderson, J. W. Hupp and D. R. Anderson. (1988). Questionable multivariate statistical inference in wildlife habitat and community studies. Journal of Wildlife Management, 52, 794–798.CrossRefGoogle Scholar
  45. Sandermann, H. (1982). Metabolism of environmental chemicals: a comparison of plant and liver enzymes systems. In Environmental mutagenesis, carcinogenesis, and plant biology, ed. E. J. Klekowski, Jr., 1–31, Praeger Special Studies. New York, Praeger Scientific, Praeger Press.Google Scholar
  46. Schnell, F. C. and T. C. Chiang. (1989). Protein adduct forming chemicals for exposure monitoring: chemicals selected for further study. Environmental Protection Agency, EPA/600/4-89/035, Las Vegas, NV.Google Scholar
  47. Soileau, S. D. (1987). Carcinogen-DNA adducts: introduction, literature summary, and recommendations. Environmental Protection Agency, EPA/600/4-87/005, Las Vegas, NV.Google Scholar
  48. Spies, R. B., J. J. Stegeman, D. W. Rice, B. Woodin, P. Thomas, J. E. Hose, J. N. Cross and M. Prieto. (1990). Sublethal responses of Platichthys stellatus to organic contaminants in San Francisco Bay with emphasis on reproduction. In Biomarkers of environmental contamination, ed. J. F. McCarthy and L. R. Shugart, 87–121. Chelsea, MI, Lewis Publishers.Google Scholar
  49. Stein, J. E., W. L. Reichert, M. Nishimoto and U. Varanasi. (1990). Overview of studies on liver carcinogenesis in English sole from Puget Sound; evidence for a xenobiotic chemical etiology II: biochemical studies. The Science of the Total Environment, 94, 51–69.CrossRefGoogle Scholar
  50. Stegeman, J. J. (1978). Influence of environmental contamination on cytochrome P-450 mixed-function oxygenases in fish: implications for recovery in the Wild Harbor Marsh. Journal of the Fisheries Research Board of Canada, 35, 668–674.CrossRefGoogle Scholar
  51. Stevens, D. (1989). Field sampling design. In Ecological assessment of hazardous waste sites: afield and laboratory reference, ed. W. Warren-Hicks, B. R. Parkhurst and S. S. Baker Jr, 4.1–4.13. Environmental Protection Agency, EPA/600/3-89/013, Corvallis, OR.Google Scholar
  52. Suter, G. W. (1990). Use of biomarkers in ecological risk assessment. In Biomarkers of environmental contamination, ed. J. F. McCarthy and L. R. Shugart, 419–426. Chelsea, MI, Lewis Publishers.Google Scholar
  53. Tice, R. R., B. G. Ormiston and A. F. McFee. (1989). The effect of agent dose and treatment time on the intercellular distribution of sister-chromatid exchanges induced by genotoxic agents in mouse bone marrow cells in vivo. Mutation Research, 215, 25–37.CrossRefGoogle Scholar
  54. Widdows, J., K. A. Burns, N. R. Menon, D. S. Page and S. Soria. (1990). Measurement of physiological energetics (scope for growth) and chemical contaminants in mussels (Arca zebra) transplanted along a contamination gradient in Bermuda. Journal of Experimental Marine Biology and Ecology, 138, 99–118.CrossRefGoogle Scholar
  55. Winston, G. W., B. S. Shane and C. B. Henry. (1988). Hepatic monooxygenase induction and promutagen activation in channel catfish from a contaminated river basin. Ecotoxi-cology and Environmental Safety, 16, 258–271.CrossRefGoogle Scholar
  56. Wirgin, I. I., G.-L. Kraemer, K. Squibb and S. J. Garte. (1990). Induction of cytochrome P450 mRNA in naturally exposed Hudson River tomcod. Paper presented at 11th annual meeting of SETAC, Arlington, VA, 12–15 November.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  • Susan M. Cormier
    • 1
  • Richard N. Racine
    • 1
  1. 1.Department of BiologyUniversity of LouisvilleLouisvilleUSA

Personalised recommendations