Advertisement

Drosophila Melanogaster: A Genetic Tool

  • Ulrich Schäfer
  • Herbert Jäckle

Abstract

At a first glance, the lens eyes of mammals and compound eyes of insects seem to have nothing in common except that they sense the light. Therefore, one of the most striking surprises in modern biology was the demonstration that the expression of a mouse gene required for eye formation can induce an insect eye when expressed, from a transgene, in the fruitfly Drosophila (Haider et al., 1995). Prior to this demonstration of a “universal master control gene”, developmental biologists had already shown that transcription factors of the Hox, Pax, zinc finger and forkhead class are conserved in evolution (e.g. Sharkey et al., 1997; Noll, 1993; Pieler and Bellefroid, 1994; Lai et al., 1993) and that the same signaling molecules and signal transduction systems participate in cell-cell communication events underlying pattern formation and organogenesis of all animals (e. g. Cadigan and Nusse, 1997; Padgett et al., 1998; Tan and Kim, 1999). These findings made scientists start acting as if the proper study of mankind is a combination of sequencing the human genome and an understanding of gene functions in model organisms such as yeast, nematode, fly, frog, zebrafish and mouse. Here we review the Drosophila system as a model showing that sophisticated genetics, developed over a period of a century, as well as its advanced molecular biology make this organism best suited for the study of functional genomics and for addressing basic questions in metazoan biology.

Keywords

Polytene Chromosome Homeotic Gene Drosophila Genome Enhancer Trap Segmentation Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams M.D., Celniker S.E., Holt R.A., Evans C.A., Gocayne J.D., Amanatides P.G., Scherer S.E., Li P.E., Hoskins R.A., Galle R.F., et al. The genome sequence of Drosophila melanogaster. Science 2000; 287: 2185–2195PubMedCrossRefGoogle Scholar
  2. Akam M.E. The location of Ultrabithorax transcripts in Drosophila tissue sections. EMBO J. 1983; 2: 2075–2084PubMedGoogle Scholar
  3. Ashburner, M., Drosophila. A Laboratory Handbook. Cold Spring Habor: Cold Spring Harbor Press, 1989Google Scholar
  4. Avery L., Wasserman S. Ordering gene function: the interpretation of epistasis in regulatory hierarchies. Trends Genet. 1992; 8: 312–316PubMedGoogle Scholar
  5. Bellen H.J., O’Kane C.J., Wilson C., Grossniklaus U., Pearson R.K., Gehring W.J. P element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 1989; 3: 1288–1300PubMedCrossRefGoogle Scholar
  6. Bender W., Spierer P., Hogness D.S. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J. Mol. Biol. 1983; 168: 17–33PubMedCrossRefGoogle Scholar
  7. Bodmer R. Heart development in Drosophila and its relationship to vertebrates. Trends Cardiovasc. Med. 1995; 5: 21–28PubMedCrossRefGoogle Scholar
  8. Brand A.H., Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118: 401–415PubMedGoogle Scholar
  9. Bridges C.B. Non-disjunction as proof of the chromosome theory of heredity. Genetics 1916; 1: 1–52 & 107-163PubMedGoogle Scholar
  10. Bridges C.B. Salivary chromosome maps, with a key to the banding of the chromosomes of Drosophila melanogaster. J. Hered. 1935; 26: 60–64Google Scholar
  11. Cadigan K.M., Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997; 11: 3286–3305PubMedCrossRefGoogle Scholar
  12. Campos-Ortega J.A., Hartenstein V., The Embryonic Development of Drosophila melanogaster. 2nd ed. Berlin: Springer Verlag, 1997Google Scholar
  13. Carlson J.R. Olfaction in Drosophila: from odor to behavior. Trends Genet. 1996; 12: 175–180PubMedCrossRefGoogle Scholar
  14. Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher D.C. Green fluorescent protein as a marker for gene expression. Science 1994; 263: 802–805PubMedCrossRefGoogle Scholar
  15. Gehring W.J., Hiromi Y. Homeotic genes and the homeobox. Annu. Rev. Genet. 1986; 20: 147–173PubMedCrossRefGoogle Scholar
  16. Golic K., Lindquist S.L. The FLP recombinase of yeast catalyzes site specific recombination in the Drosophila genome. Cell 1989; 59: 499–509PubMedCrossRefGoogle Scholar
  17. Goto T., Macdonald P., Maniatis T. Early and late periodic patterns of even skipped expression are controlled by distinct regulatory elements that respond to different spatial cues. Cell 1989; 57: 413–422PubMedCrossRefGoogle Scholar
  18. Haider G., Callaerts P., Gehring W.J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 1995; 267: 1788–1792CrossRefGoogle Scholar
  19. Harding K., Hoey T., Warrior R., Levine M. Autoregulatory and gap gene response elements of the even-skipped promoter of Drosophila. EMBO J. 1989; 8: 1205–1212PubMedGoogle Scholar
  20. Harding K., Rushlow C., Doyle H., Hoey T., Levine M. Cross-regulatory interactions among pair rule genes in Drosophila. Science 1986; 233: 953–959PubMedCrossRefGoogle Scholar
  21. Heitz E., Bauer H. Beweis für die Chromosomennatur der Kernschleifen in den Knäuelkernen von Bibio hortulans. Z. Zellforsch. 1933; 17: 67–82CrossRefGoogle Scholar
  22. Klaembt C., Jacobs J.R., Goodman C.S. The midline of the Drosophila central nervous system: A model for the genetic analysis of cell fate, cell migration, and growth cone guidance. Cell 1991; 64: 801–815CrossRefGoogle Scholar
  23. Konopka R., Benzer S. Clock mutants in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 1971; 68: 2112–2116PubMedCrossRefGoogle Scholar
  24. Lai E., Clark K.L., Burley S.K., Darnell J.E. Jr. Hepatocyte nuclear factor 3/fork head or “winged helix” proteins: a family of transcription factors of diverse biologic function. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 10421–10423PubMedCrossRefGoogle Scholar
  25. Laughon A., Scott M.P. Sequence of a Drosophila segmentation gene: protein structure homology with DNA-binding properties. Nature 1984; 310: 25–31PubMedCrossRefGoogle Scholar
  26. Lindsley D.L., Sandler L., Baker B.S., Carpenter A.T.C., Denell R.E., Hall J.C., Jacobs P.A., Miklos G.L.G., Davis B.K., Gethmann R.C., Hardy R.W., Hessler A.Y., Miller S.M., Nozawa H., Parry D.M., Gould-Somero M. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 1972; 71: 157–184PubMedGoogle Scholar
  27. Lindsley D.L., Zimm G.G. The Genome of Drosophila melanogaster. San Diego: Academic Press, 1992Google Scholar
  28. Martinez Arias A. Development and patterning of the larval epidermis of Drosophila.“ In The Development of Drosophila melanogaster, Vol. 1:517–608, M. Bate, A. Martinez Arias, ed. Cold Spring Harbor, Cold Spring Harbor Press, 1993Google Scholar
  29. McGinnis W., Garber R.L., Wirz J., Kuroiwa A., Gehring W.J. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 1984; 37: 403–408PubMedCrossRefGoogle Scholar
  30. Morgan T.H. Sex-limited inheritance in Drosophila. Science 1910; 32: 120–122PubMedCrossRefGoogle Scholar
  31. Morgan T.H., Sturtevant A.H., Muller H.J., Bridges C.B. The Mechanism of Mendelian Heredity. New York: Henry Holt Co., 1915CrossRefGoogle Scholar
  32. Muller H.J. Genetic variability, twin hybrids and constant hybrids, in a case of balanced lethal factors. Genetics 1918; 3: 422–499PubMedGoogle Scholar
  33. Muller H.J. Artificial transmutation of the gene. Science 1927; 66: 84–87PubMedCrossRefGoogle Scholar
  34. Myers E.W., Sutton G.G., Deicher A.L., Dew I.M., Fasulo D.P., Flanigan M.J., Kravitz S.A., Mobarry C.M., Reinert K.H.J., Remington K.A., et al., A whole-genome assembly of Drosophila. Science 2000; 287: 2196–2204PubMedCrossRefGoogle Scholar
  35. Noll M. Evolution and role of Pax genes. Curr. Opin. Genet. Dev. 1993; 3: 595–605PubMedCrossRefGoogle Scholar
  36. Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287: 795–801PubMedCrossRefGoogle Scholar
  37. O’Kane C.J., Gehring W.J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 1987; 84: 9123–9127PubMedCrossRefGoogle Scholar
  38. Padgett R.W., Das P., Krishna S. TGF-beta signalling, Smads, and tumor suppressors. BioEssays 1998; 20: 382–390PubMedCrossRefGoogle Scholar
  39. Painter T.S. A new method for the study of chromosome aberrations and the plotting of chromosome maps in Drosophila melanogaster. Genetics 1934; 19: 175–188PubMedGoogle Scholar
  40. Pankratz M.J., Jäckie H. “Blastoderm segmentation.” In The Development of Drosophila melanogaster, Vol. 1:467–516, M. Bate, A. Martinez Arias, ed. Cold Spring Harbor, Cold Spring Harbor Press, 1993Google Scholar
  41. Pieler T., Bellefroid E. Perspectives on zinc finger protein function and evolution — An update. Mol. Biol. Rep. 1994; 20: 1–8PubMedCrossRefGoogle Scholar
  42. Plautz J.D., Day R.N., Dailey G.M., Welsh S.B., Hall J.C., Halpain S., Kay S.A. Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells. Gene 1996; 173: 83–87PubMedCrossRefGoogle Scholar
  43. Rivera-Pomar R., Jäckie H. From gradients to stripes in Drosophila embryogenesis: filling in the gaps. Trends Genet. 1996; 12: 478–483PubMedCrossRefGoogle Scholar
  44. Rorth P. A modular misexpression screen in Drosophila detecting tissue-specific phenotypes. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 12418–12422PubMedCrossRefGoogle Scholar
  45. R¢rth P., Szabo K., Bailey A., Laverty T., Rehm J., Rubin G.M., Weigmann K., Milan M., Benes V., Systematic gain-of-function genetics in Drosophila. Development 1998; 125: 1049–1057Google Scholar
  46. Rubin G.M., Spradling A.C. Genetic transformation of Drosophila with transposable element vectors. Science 1982; 218: 348–353PubMedCrossRefGoogle Scholar
  47. Rubin G.M., Yandell M.D., Wortman J.R., Miklos G.L.G., Nelson C.R., Hariharan I.K., Fortini M.E., Li P.W., Apweiler R., Fleischmann W., et al. Comparative genomics of the eukaryotes. Science 2000; 287: 2204–2215PubMedCrossRefGoogle Scholar
  48. Ruddle F.H., Bartels J.L., Bentley K.L., Kappen C., Murtha M.T., Pendieton J.W. Evolution of Hox genes. Annu. Rev. Genet. 1994; 28: 423–442PubMedCrossRefGoogle Scholar
  49. Samakovlis C., Hacohen N., Manning G., Sutherland D.C., Guillemin K., Krasnow M.A. Development of the Drosophila tracheal system occurs by a series of morphologically distinct but genetically coupled branching events. Development 1996; 122: 1395–1407PubMedGoogle Scholar
  50. Schupbach T., Wieschaus E. Female sterile mutations on the second chromosome of Drosophila melanogaster. Genetics 1996; 129: 1119–1136Google Scholar
  51. Sharkey M., Graba Y., Scott M.P. Hox genes in evolution: protein surfaces and paralog groups. Trends Genet. 1997; 13: 145–151PubMedCrossRefGoogle Scholar
  52. Spradling A.C., Stern D., Beaton A., Rehm E.J., Laverty T., Mozden N., Misra S., Rubin G.M. The BDGP gene disruption project: single P element insertions mutating 25% of vital Drosophila genes. Genetics 1999; 153: 135–177PubMedGoogle Scholar
  53. Spradling A.C., Stern D., Kiss I., Roote J., Laverty T., Rubin G.M. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl. Acad. Sci. U.S.A. 1995; 92: 10824–10830PubMedCrossRefGoogle Scholar
  54. St Johnston D., Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell 1992; 68: 201–219PubMedCrossRefGoogle Scholar
  55. Stutevant, A.H. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J. Exp. Zool. 1913; 14:43–59.CrossRefGoogle Scholar
  56. Tan P.B.O., Kim S.K. Signaling specificity — the RTK/RAS/MAP kinase pathway in metazoans. Trends Genet. 1999; 15: 145–149PubMedCrossRefGoogle Scholar
  57. Tautz D., Pfeifle C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 1989; 98: 81–85PubMedCrossRefGoogle Scholar
  58. Thomas B.J., Wassarman D.A. A fly’s eye view of biology. Trends Genet. 1999; 15: 184–190PubMedCrossRefGoogle Scholar
  59. Tully T., Boynton S., Brandes C., Dura J.M., Mihalek R., Preat T., Villella A. Genetic dissection of memory formation in Drosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol. 1990; 55: 203–211PubMedCrossRefGoogle Scholar
  60. Wensink P.C., Finnegan D.J., Donelson J.E., Hogness D.S. A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster. Cell 1974; 3: 315–325PubMedCrossRefGoogle Scholar
  61. Xu T., Rubin G.M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 1993; 117: 1223–1237PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Ulrich Schäfer
    • 1
  • Herbert Jäckle
    • 1
  1. 1.Max Planck Institut für biophysikalische ChemieAbteilung Molekulare EntwicklungsbiologieGöttingenGermany

Personalised recommendations