Skip to main content

Antioxidants and Atherosclerosis: Animal Studies

  • Chapter
Oxidative Stress and Vascular Disease

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 224))

  • 402 Accesses

Abstract

Atherosclerosis and its clinical sequelae such as myocardial infarction and stroke represent a major source of morbidity and mortality in the developed world, claiming over 960,000 lives annually in the United States alone (1). A wealth of data now links serum cholesterol, in particular low-density lipoprotein (LDL) cholesterol (2) to the development of atherosclerosis. Despite this causative association between LDL cholesterol and atherosclerosis, isolated LDL particles typically fail to demonstrate atherogenic effects in vitro (3). For example, the loading of tissue macrophages with LDL cholesterol is tightly regulated (3). In contrast, the oxidation of LDL lipids is associated with a number of structural changes within LDL that support its unregulated uptake into macrophages leading to foam cell formation, the hallmark of an early atherosclerotic lesion (3,4). In vitro studies also indicate that oxidized LDL (oxLDL) possesses many other proatherogenic properties that are reviewed in detail in Chapter 4. Consistent with an important role for oxLDL in atherosclerosis, its formation has been identified in vivo (5,6). Despite this demonstration that oxLDL occurs in vivo, data directly attributing a causative role of oxLDL in atherosclerosis has been difficult to obtain. This chapter will review available evidence on antioxidants and atherosclerosis from the perspective that oxLDL is an important factor in the atherogenic process. The implications of the “oxidative modification hypothesis” of atherosclerosis with respect to vascular antioxidant status will be reviewed, and animal intervention trials investigating the effect of antioxidant manipulation on atherosclerosis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Heart Association. 1998 Heart and stroke statistical update. Internet. 1998. American Heart Association.

    Google Scholar 

  2. Wilson PW, Garrison RJ, Castelli WP, Feinleib M, McNamara PM, Kannel WB. Prevalence of coronary heart disease in the Framingham Offspring Study: role of lipoprotein cholesterols. Am J Cardiol. 1980;46:649.

    Article  PubMed  CAS  Google Scholar 

  3. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979;76:333.

    Article  PubMed  CAS  Google Scholar 

  4. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptor for acetylated low density lipoproteins. Proc Natl Acad Sci USA. 1981;78:6499.

    Article  PubMed  CAS  Google Scholar 

  5. Palinski W, Rosenfeld ME, Ylä-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Witztum JL. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA. 1989;86:1372.

    Article  PubMed  CAS  Google Scholar 

  6. Ylä-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest. 1989;84:1086.

    Article  PubMed  Google Scholar 

  7. Glavind J., Hartmann S, Clemmesen J, Jessen KE, Dam H. Studies on the role of lioperoxides in human pathology, II: the presence of peroxidized lipids in the atherosclerotic aorta. Acta Path Microbiol Immunol Scand. 1952;30:1.

    Article  CAS  Google Scholar 

  8. Brooks CJ, Harland WA, Steel G. Squalene, 26-hydroxycholesterol and 7-ketocholesterol in human atheromatous plaques. Biochim Biophys Acta 1966;125:620.

    Article  PubMed  CAS  Google Scholar 

  9. Gilbert JD, Harland WA, Steel G, Brooks CJ. The isolation and identification of 5 alphacholestan-3 beta-ol from the human atheromatous aorta. Biochim Biophys Acta 1969;187:453.

    Article  CAS  Google Scholar 

  10. Harland WA, Gilbert JD, Steel G, Brooks CJ. Lipids of human atheroma. The occurrence of a new group of polar sterol esters in various stages of human atherosclerosis. Atherosclerosis 1971;13:239.

    Article  PubMed  CAS  Google Scholar 

  11. Brooks CJ, Steel G, Gilbert JD, Harland WA. Lipids of human atheroma. Characterisation of a new group of polar sterol esters from human atherosclerotic plaques. Atherosclerosis 1971;13:223.

    Article  PubMed  CAS  Google Scholar 

  12. Gilbert JD, Brooks CJ, Harland WA. Lipids of human atheroma. VII. Isolation of diesters of cholest-5-ene-3,26-diol from extracts of advanced atherosclerotic lesions of human aorta. Biochim Biophys Acta. 1972;270:149.

    Article  PubMed  CAS  Google Scholar 

  13. Harland WA, Gilbert JD, Brooks CJ. Lipids of human atheroma. 8. Oxidised derivatives of cholesteryl linoleate. Biochim Biophys Acta. 1973;316:378.

    Article  PubMed  CAS  Google Scholar 

  14. Carpenter KLH, Taylor SE, Ballantine JA, Fussell B, Halliwell B, Mitchinson MJ. Lipids and oxidised lipids in human atheroma and normal aorta. Biochim Biophys Acta. 1993;1167:121.

    Article  PubMed  CAS  Google Scholar 

  15. Chisolm GM, Ma G, Irwin KC, Martin LL, Gunderson KG, Linberg LF, Morel DW, DiCorleto PE. 7 beta-hydroperoxycholest-5-en-3 beta-ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoprotein. Proc Natl Acad Sci USA. 1994;91:11452.

    Article  PubMed  CAS  Google Scholar 

  16. Kuhn H, Belkner J, Wiesner R, Schewe T, Lankin VZ, Tikhaze AK. Structure elucidation of oxygenated lipids in human atherosclerotic lesions. EICOSANOIDS 1992;5:17.

    PubMed  CAS  Google Scholar 

  17. Lankin VZ, Vikhert AM, Kosykh VA, Tikhaze AK, Galakhov IE, Orekhov AN, Repin VN. Enzymatic detoxication of Superoxide anion-radicals and lipoperoxides in intima and media of atherosclerotic aorta. Biomed Biochim Acta. 1984;43:797.

    PubMed  CAS  Google Scholar 

  18. Dubick MA, Hunter GC, Casey SM, Keen CL. Aortic ascorbic acid, trace elements, and Superoxide dismutase activity in human aneurysmal and occlusive disease. Proc Soc Exp Biol Med. 1987;184:138.

    PubMed  CAS  Google Scholar 

  19. Mezzetti A, Lapenna D, Calafiore AM, Proietti-Franceschilli G, Porreca E, De Cesare D, Neri M, Di Ilio C, Cuccurullo F. Glutathione-related enzyme activities and lipoperoxide levels in human internal mammary artery and ascending aorta. Relations with serum lipids. Arterioscler Thromb. 1992;12:92.

    Article  PubMed  CAS  Google Scholar 

  20. Ceriello A, Giacomello R, Stel G, Motz E, Taboga C, Tonutti L, Pirisi M, Falleti E, Bartoli E. Hyperglycemia-induced thrombin formation in diabetes. Diabetes. 1995;44:924.

    Article  PubMed  CAS  Google Scholar 

  21. Toborek M, Feldman DL, Hennig B. Aortic antioxidant defense and lipid peroxidation in rabbits fed diets supplemented with different animal and plant fats. J Am Coll Nutr. 1997;16:32.

    PubMed  CAS  Google Scholar 

  22. Mugge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG. Chronic treatment with polyethylene-glycolated Superoxide dismutase partially restores endotheliumdependent vascular relaxations in cholesterol-fed rabbits. Circ Res. 1991;69:1293.

    Article  PubMed  CAS  Google Scholar 

  23. Del Boccio G, Lapenna D, Porreca E, Pennelli A, Savini F, Feliciani P, Ricci G, Cuccurullo F. Aortic antioxidant defence mechanisms: time-related changes in cholesterol-fed rabbits. Atherosclerosis 1990;81:127.

    Article  PubMed  Google Scholar 

  24. Mantha SV, Prasad M, Kalra J, Prasad K: Antioxidant enzymes in hypercholesterolemia and effects of vitamin E in rabbits. Atherosclerosis 1993; 101:135.

    Article  PubMed  CAS  Google Scholar 

  25. Mantha SV, Kalra J, Prasad K. Effects of probucol on hypercholesterolemia-induced changes in antioxidant enzymes. Life Sci 1996;58:503.

    Article  PubMed  CAS  Google Scholar 

  26. Godin DV, Garnett ME, Cheng KM, Nichols CR: Sex-related alterations in antioxidant status and susceptibility to atherosclerosis in Japanese quail. Can J Cardiol. 1995; 11:945.

    PubMed  CAS  Google Scholar 

  27. Godin DV, Cheng KM, Garnett ME, Nichols CR. Antioxidant status of Japanese quail: comparison of atherosclerosis-susceptible and-resistant strains. Can J Cardiol. 1994;10:221.

    PubMed  CAS  Google Scholar 

  28. Wang J, Lu YC, Guo ZZ, Zhen EZ, Shi F. Lipid peroxides, glutathione peroxidase, prostacyclin and cell cycle stages in normal and atherosclerotic Japanese quail arteries. Atherosclerosis 1989;75:219.

    Article  PubMed  CAS  Google Scholar 

  29. Cheng KM, Aggrey SE, Nichols CR, Garnett ME, Godin DV. Antioxidant enzymes and atherosclerosis in Japanese quail: heritability and genetic correlation estimates. Can J Cardiol. 1997;13:669.

    PubMed  CAS  Google Scholar 

  30. Fukai T, Galis ZS, Meng XP, Parthasarathy S, Harrison DG. Vascular expression of extracellular Superoxide dismutase in atherosclerosis. J Clin Invest. 1998;101:2101.

    Article  PubMed  CAS  Google Scholar 

  31. Suarna C, Dean RT, May J, Stocker R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of α-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol. 1995;15:1616.

    Article  PubMed  CAS  Google Scholar 

  32. Killion SL, Hunter GC, Eskelson CD, Dubick MA, Putnam CW, Hall KA, Luedke CA, Misiorowski RL, Schilling JD, Mclntyre KE: Vitamin E levels in human atherosclerotic plaque: the influence of risk factors. Atherosclerosis 1996; 126:289.

    Article  PubMed  CAS  Google Scholar 

  33. Carpenter KL, Cheeseman KH, van d, V, Taylor SE, Walker MK, Mitchinson MJ. Depletion of alpha-tocopherol in human atherosclerotic lesions. Free Radic Res 1995;23:549.

    Article  PubMed  CAS  Google Scholar 

  34. Heinrich MR, Mattil HA. Lipids of muscle and brain in rats deprived of tocopherol. Proc Soc Exp Biol Med. 1943;52:344.

    CAS  Google Scholar 

  35. Morgulis S, Wilder VM, Spencer HC, Eppstein SH. Studies on the lipid content of normal and dystrophic rabbits. J Biol Chem. 1938;124:755.

    CAS  Google Scholar 

  36. Stamler J, Pick R, Katz LN. Failure of vitamin E, vitamin B12, and pancreatic extracts to influence plasma lipids and atherogenesis in cholesterol-fed chicks. Circulation 1954;8:455.

    Google Scholar 

  37. Beeler DA, Rogler JC, Quackenbush FW. Effects of certain dietary lipids on plasma cholesterol and atherosclerosis in the chick. J Nutr. 1962;78:184.

    PubMed  CAS  Google Scholar 

  38. Brattsand R. Actions of vitamins A and E and some nicotinic acid derivatives on plasma lipids and on lipid infiltration of aorta in cholesterol-fed rabbits. Atherosclerosis 1975;22:47.

    Article  PubMed  CAS  Google Scholar 

  39. Wilson RB, Middleton CC, Sun GY. Vitamin E, antioxidants and lipid peroxidation in experimental atherosclerosis on rabbits. J Nutr. 1978;108:1858.

    PubMed  CAS  Google Scholar 

  40. Westrope KL, Miller RL, Wilson RB. Vitamin E in a rabbit model of endogenous hypercholesterolemia and atherosclerosis. Nutr Reports Intl. 1982;25:83.

    CAS  Google Scholar 

  41. Prasad K, Kalra J. Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J. 1993;125:958.

    Article  PubMed  CAS  Google Scholar 

  42. Williams RJ, Motteram JM, Sharp CH, Gallagher PJ. Dietary vitamin E and the attenuation of early lesion development in modified Watanabe rabbits. Atherosclerosis 1992;94:153.

    Article  PubMed  CAS  Google Scholar 

  43. Schwenke DC, Behr SR. Vitamin E combined with selenium inhibits atherosclerosis in hypercholesterolemic rabbits independently of effects on plasma cholesterol concentrations. Circ Res. 1998;83:366.

    Article  PubMed  CAS  Google Scholar 

  44. Morrissey RB, Donaldson WE. Cholesterolemia in Japanese quail: response to a mixture of vitamins C and E and choline chloride. Artery 1979;5:182.

    PubMed  CAS  Google Scholar 

  45. Wojcicki J, Rozewicka B, Barcew-Wisziewska B, Samochowiec L, Juzwaik S, Kadlubowska D, Tustanowski T, Juzyszyn Z. Effect of selenium and vitamin E on the development of experimental atherosclerosis in rabbits. Atherosclerosis 1991;87:9.

    Article  PubMed  CAS  Google Scholar 

  46. Morel DW, de la Llera-Moya M, Friday KE: Treatment of cholesterol-fed rabbits with dietary vitamins E and C inhibits lipoprotein oxidation but not development of atherosclerosis. J Nutr. 1994;124:2123.

    PubMed  CAS  Google Scholar 

  47. Keaney JF, Jr., Gaziano JM, Xu A, Frei B, Curran-Celentano J, Shwaery GT, Loscalzo J, Vita JA. Low-dose α-tocopherol improves and high-dose α-tocopherol worsens endothelial vasodilator function in cholesterol-fed rabbits. J Clin Invest. 1994;93:844.

    Article  PubMed  Google Scholar 

  48. Shaish A, Daugherty A, O’Sullivan F, Schonfeld G, Heinecke JW. Beta-carotene inhibits atherosclerosis in hypercholesterolemic rabbits. J Clin Invest. 1995;96:2075.

    Article  PubMed  CAS  Google Scholar 

  49. Tijburg LB, Wiseman SA, Meijer GW, Weststrate JA. Effects of green tea, black tea and dietary lipophilic antioxidants on LDL oxidizability and atherosclerosis in hypercholesterolaemic rabbits. Atherosclerosis 1997;135:37.

    Article  PubMed  Google Scholar 

  50. Willingham AK, Bolanos C, Bohannan E, Cenedella RJ. The effects of high levels of vitamin E on the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. J Nutr Biochem. 1993;4:651.

    Article  CAS  Google Scholar 

  51. Kleinveld HA, Demacker PNM, Stalenhoef AFH. Comparative study on the effect of lowdose vitamin E and probucol on the susceptibility of LDL to oxidation and the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb. 1994;14:1386.

    Article  PubMed  CAS  Google Scholar 

  52. Kleinveld HA, Hak-Lemmers HL, Hectors MP, de Fouw NJ, Demacker PN, Stalenhoef AF: Vitamin E and fatty acid intervention does not attenuate the progression of atherosclerosis in watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 1995; 15:545.

    Article  Google Scholar 

  53. Fruebis J, Bird DA, Pattison J, Palinski W. Extent of antioxidant protection of plasma LDL is not a predictor of the antiatherogenic effect of antioxidants. J Lipid Res 1997;38:2455.

    PubMed  CAS  Google Scholar 

  54. Smith TL, Kummerow FA. Effect of dietary vitamin E on plasma lipids and atherogenesis in restricted ovulator chickens. Atherosclerosis 1989;75:105.

    Article  PubMed  CAS  Google Scholar 

  55. Bocan TM, Mueller SB, Brown EQ, Uhlendorf PD, Mazur MJ, Newton RS. Antiatherosclerotic effects of antioxidants are lesion-specific when evaluated in hypercholesterolemic New Zealand white rabbits. Exp Mol Pathol. 1992;57:70.

    Article  PubMed  CAS  Google Scholar 

  56. Chen L, Haught WH, Yang B, Saldeen TG, Parathasarathy S, Mehta JL. Preservation of endogenous antioxidant activity and inhibition of lipid peroxidation as common mechanisms of antiatherosclerotic effects of vitamin E, lovastatin and amlodipine. J Am Coll Cardiol. 1997;30:569.

    Article  PubMed  CAS  Google Scholar 

  57. Verlangieri AJ, Bush MJ: Effects of d-alpha-tocopherol supplementation on experimentally induced primate atherosclerosis. J Am Coll Nutr. 1992; 11:131.

    PubMed  CAS  Google Scholar 

  58. Parker RA, Sabrah T, Cap M, Gill BT. Relation of vascular oxidative stress, α-tocopherol, and hypercholesterolemia to early atherosclerosis in hamsters. Arterioscler Thromb Vasc Biol. 1995;15:349.

    Article  PubMed  CAS  Google Scholar 

  59. Crawford RS, Kirk EA, Rosenfeld ME, LeBoeuf RC, Chait A. Dietary antioxidants inhibit development of fatty streak lesions in the LDL receptor-deficient mouse. Arterioscler Thromb Biol 1998;18:1506.

    Article  CAS  Google Scholar 

  60. Godfried SL, Combs GF, Saroka JM, Dillingham LA. Potentiation of atherosclerotic lesions in rabbits by a high dietary level of vitamin E. Br J Nutr. 1989;61:607.

    Article  PubMed  CAS  Google Scholar 

  61. Fruebis J, Carew TE, Palinski W. Effect of vitamin E on atherogenesis in LDL receptordeficient rabbits. Atherosclerosis 1995;117:217.

    Article  PubMed  CAS  Google Scholar 

  62. Marshall FN: Pharmacology and toxicology of probucol. Artery 1982; 10:7.

    PubMed  CAS  Google Scholar 

  63. Kritchevsky D, Kirn HK, Tepper SA. Influence of 4,4-(isopropylidenedithio)bis(2,6-di-t-butylphenol)(DH-581) on experimental atherosclerosis in rabbits. Proc Soc Exp Biol Med. 1971;136:1216.

    PubMed  CAS  Google Scholar 

  64. Tawara K, Ishihara M, Ogawa H, Tomikawa M. Effect of probucol, pantethine and their combinations on serum lipoprotein metabolism and on the incidence of atheromatous lesions in the rabbit. Jpn J Pharmacol 1986;41:211.

    Article  PubMed  CAS  Google Scholar 

  65. Wissler RW, Vesselinovitch D: Combined effects of cholestyramine and probucol on regression of atherosclerosis in rhesus monkey aortas. Appl Pathol 1983; 1:89.

    PubMed  CAS  Google Scholar 

  66. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D. Probucol inhibits oxidative modification of low density lipoprotein. J Clin Invest. 1986;77:641.

    Article  PubMed  CAS  Google Scholar 

  67. Kita T, Nagano Y, Yokode M, Ishii K, Kume N, Ooshima A, Yoshida H, Kawai C. Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia. Proc Natl Acad Sci USA. 1987;84:5928.

    Article  PubMed  CAS  Google Scholar 

  68. Carew TE, Schwenke DC, Steinberg D. Antiatherogenic effect of probucol unrelated to its hypocholesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit. Proc Natl Acad Sci USA. 1987;84:7725.

    Article  PubMed  CAS  Google Scholar 

  69. Mao SJT, Yates MT, Parker RA, Chi EM, Jackson RL. Attenuation of atherosclerosis in a modified strain of hypercholesterolemic Watanabe rabbits with the use of a probucol analogue (MDL 29,311) that does not lower serum cholesterol. Arterioscler Thromb. 1991; 11:1266.

    Article  PubMed  CAS  Google Scholar 

  70. Sasahara M, Raines EW, Chait A, Carew TE, Steinberg D, Wahl PW, Ross R. Inhibition of hypercholesterolemia-induced atherosclerosis in the nonhuman primate by probucol: I. Is the extent of atherosclerosis related to resistance of LDL to oxidation? J Clin Invest. 1994;94:155.

    Article  PubMed  CAS  Google Scholar 

  71. Zhang SH, Reddick RL, Avdievich E, Surles LK, Jones RG, Reynolds JB, Quarfordt SH, Maeda N. Paradoxical enhancement of atherosclerosis by probucol treatment in apolipoprotein E-deficient mice. J Clin Invest. 1997;99:2858.

    Article  PubMed  CAS  Google Scholar 

  72. Bird DA, Tangirala RK, Fruebis J, Steinberg D, Witztum JL, Palinski W. Effect of probucol on LDL oxidation and atherosclerosis in LDL receptor-deficient mice. J Lipid Res 1998;39:1079.

    PubMed  CAS  Google Scholar 

  73. Cynshi O, Kawabe Y, Suzuki T, Takashima Y, Kaise H, Nakamura M, Ohba Y, Kato Y, Tamura K, Hayasaka A, Higashida A, Sakaguchi H, Takeya M, Takahashi K, Inoue K, Noguchi N, Niki E, Kodama T. Antiatherogenic effects of the antioxidant BO-653 in three different animal models. Proc Natl Acad Sci USA. 1998;95:10123.

    Article  PubMed  CAS  Google Scholar 

  74. Sparrow CP, Doebber TW, Olszewski J, Wu MS, Ventre J, Stevens KA, Chao Y. Low density liopoprotein is protected from oxidation and the pregression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N’diphenyl-phenylenediamine. J Clin Invest. 1992;89:1885.

    Article  PubMed  CAS  Google Scholar 

  75. Stein Y, Stein O, Delplanque B, Fesmire JD, Lee DM, Alaupovic P. Lack of effect of probucol on atheroma formation in cholesterol-fed rabbits kept at comparable plasma cholesterol levels. Atherosclerosis 1989;75:145.

    Article  PubMed  CAS  Google Scholar 

  76. Daugherty A, Zweifel BS, Schonfeld G. Probucol attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Br J Pharmacol. 1989;98:612.

    Article  PubMed  CAS  Google Scholar 

  77. Finckh B, Niendorf A, Rath M, Beisiegel U. Antiatherosclerotic effect of probucol in WHHL rabbits: are there plasma parameters to evaluate this effect? Eur J Clin Pharmacol. 1991;40:Suppl-80.

    Google Scholar 

  78. Daugherty A, Zweifel BS, Schonfeld G. The effects of probucol on the progression of atherosclerosis in mature Watanabe heritable hyperlipidaemic rabbits. Br J Pharmacol. 1991;103:1013.

    Article  PubMed  CAS  Google Scholar 

  79. Nagano Y, Nakamura T, Matsuzawa Y, Cho M, Ueda Y, Kita T. Probucol and atherosclerosis in the Watanabe heritable hyperlipidemic rabbit-long-term antiatherogenic effect and effects on established plaques. Atherosclerosis 1992;92:131.

    Article  PubMed  CAS  Google Scholar 

  80. Yamaguchi Y, Kitagawa S, Imaizumi N, Kunitomo M, Fujiwara M. Enhancement of aortic cholesterol deposition by dietary linoleic acid in cholesterol-fed mice: an animal model for primary screening of antiatherosclerotic agents. J Pharmacol Toxicol Methods 1993;30:169.

    Article  PubMed  CAS  Google Scholar 

  81. Bocan TM, Mazur MJ, Mueller SB, Charlton G, Kieft KA, Krause BR. Atherosclerotic lesion development in hypercholesterolemic Japanese quail following probucol treatment: a biochemical and morphologic evaluation. Pharmacol Res 1994;29:65.

    Article  PubMed  CAS  Google Scholar 

  82. Fruebis J, Steinberg D, Dresel HA, Carew TA. A comparison of the antiatherogenic effects of probucol and of a structural analogue of probucol in low density lipoprotein receptor-deficient rabbits. J Clin Invest. 1994;94:392.

    Article  PubMed  CAS  Google Scholar 

  83. Braesen JH, Beisiegel U, Niendorf A. Probucol inhibits not only the progression of atherosclerotic disease, but causes a different composition of atherosclerotic lesions in WHHL-rabbits. Virchows Arch. 1995;426:179.

    Article  PubMed  CAS  Google Scholar 

  84. Del Rio M, Chulia T, Ruiz E, Tejerina T: Action of probucol in arteries from normal and hypercholesterolaemic rabbits. Br J Pharmacol 1996; 118:1639.

    Article  PubMed  Google Scholar 

  85. Kogushi M, Tanaka H, Ohtsuka I, Yamada T, Kobayashi H, Saeki T, Takada M, Hiyoshi H, Yanagimachi M, Kimura T, Yoshitake S, Saito I. Anti-atherosclerotic effect of E5324, an inhibitor of acyl-CoA:cholesterol acyltransferase, in Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 1996;124:203.

    Article  PubMed  CAS  Google Scholar 

  86. Hoshida S, Yamashita N, Igarashi J, Aoki K, Kuzuya T, Hori M. Long-term probucol treatment reverses the severity of myocardial injury in watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 1997;17:2801.

    Article  PubMed  CAS  Google Scholar 

  87. Wu YJ, Hong CY, Lin SJ, Wu P, Shiao MS: Increase of vitamin E content in LDL and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza. Arterioscler Thromb Biol. 1998; 18:481.

    Article  Google Scholar 

  88. Oshima R, Ikeda T, Watanabe K, Itakura H, Sugiyama N. Probucol treatment attenuates the aortic atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Atherosclerosis 1998;137:13.

    Article  PubMed  CAS  Google Scholar 

  89. Keaney JF, Jr., Frei B. Antioxidant protection of low-density lipoprotein and its role in the prevention of atherosclerotic vascular disease, in Frei B (ed): Natural antioxidants in human health and disease. San Diego, Academic Press, 1994, pp 303–352.

    Google Scholar 

  90. Jialal I, Norkus EP, Cristol L, Grundy SM. Beta-carotene inhibits the oxidative modification of low density lipoprotein. Biochim Biophys Acta. 1991;1086:134.

    Article  PubMed  CAS  Google Scholar 

  91. Gaziano JM, Hatta A, Flynn M, Johnson EJ, Krinsky NI, Ridker PM, Hennekens CH, Frei B. Supplementation with beta-carotene in vivo and in vitro does not inhibit low density lipoprotein (LDL) oxidation. Atherosclerosis 1995;112:187.

    Article  PubMed  CAS  Google Scholar 

  92. Hatta A, Frei B. Oxidative modification and antioxidant protection of human low density lipoprotein at high and low oxygen partial pressures. J Lipid Res. 1995;36:2383.

    PubMed  CAS  Google Scholar 

  93. Gainer JL, Jones JR. The use of crocetin in experimental atherosclerosis. Experientia 1975;31:548.

    Article  PubMed  CAS  Google Scholar 

  94. Byorkhem I, Henriksson-Freyschuss A, Breuer O, Diczfalusy U, Berglund L, Henriksson P. The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler Thromb. 1991;11:15.

    Article  Google Scholar 

  95. Freyschuss A, Sitko-Rahm A, Swidenborg J, Henriksson P, Bj, Berglund L, Nilsson J. Antioxidant treatment inhibits the development of intimai thickening after balloon injury of the aorta in hypercholesterolemic rabbits. J Clin Invest. 1993;91:1282.

    Article  PubMed  CAS  Google Scholar 

  96. Jialal I, Vega GL, Grundy SM. Physiologic levels of ascorbate inhibit oxidative modification of low density lipoprotein. Atherosclerosis 1990;82:185.

    Article  PubMed  CAS  Google Scholar 

  97. Retsky KL, Freeman MW, Frei B. Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. Anti-rather than prooxidant activity of vitamin C in the presence of transition metal ions. J Biol Chem. 1993;268:1304.

    PubMed  CAS  Google Scholar 

  98. Willis GC. An experimental study of the intimai ground substance in atherosclerosis. Can Med Assoc J. 1953;69:17.

    PubMed  CAS  Google Scholar 

  99. Fujinami T, Okado K, Senda K, Sugimura M, Kishikawa M. Experimental atherosclerosis with ascorbic acid deficiency. Jap Circ J. 1971;35:1559.

    Article  PubMed  CAS  Google Scholar 

  100. Ginter E, Ondreicka R, Bobek P, Simko V. The influence of chronic vitamin C deficiency on fatty acid composition of blood serum, liver triglycerides, and cholesterol esters in guinea pigs. J Nutr. 1969;99:261.

    PubMed  CAS  Google Scholar 

  101. Ginter E, Babala J, Cerven J: The effect of chronic hypovitaminosis C on the metabolism of cholesterol and atherogenesis in guinea pigs. J Atheroscler Res. 1969; 10:341.

    Article  PubMed  CAS  Google Scholar 

  102. Verlangieri AJ, Jollis TM, Mumma RO. Effects of ascorbic acid and its 2-sulfate on rabbit aortic intimai thickening. Blood vessels. 1977;14:157.

    PubMed  CAS  Google Scholar 

  103. Beetens JR, Coene MC, Veheyen A, Zonnekeyn L, Herman AG. Vitamin C increases the prostacyclin production and decreases the vascular lesions in experimental atherosclerosis in rabbits. Prostaglandins 1986;32:335.

    Article  PubMed  CAS  Google Scholar 

  104. Kimura H, Yamada Y, Morita Y, Ikeda J, Matsuo T. Dietary ascorbic acid depresses plasma and low density lipoprotein lipid peroxidation in genetically scorbutic rabbits. J Nutr. 1992;122:1904.

    PubMed  CAS  Google Scholar 

  105. Wilson JD. Disorders of vitamins: deficiency, escess, and errors of metabolism, in Petersdorf RG, Adams RD, Braunwald E, Isselbacher KJ, Martin JB, Wilson JD (eds): Harrison’s principals of internal medicine. New York, McGraw Hill, 1983, pp 461–472.

    Google Scholar 

  106. Bannerjee S, Ghosh PK. Hexosamine and hydroxyproline contents of tissues in scurvy. Proc Soc Exp Biol Med. 1961;107:275.

    Google Scholar 

  107. Ginter E, Nemec R, Cerven J, Mikus L. Quantification of lowered cholesterol oxidation in guinea pigs with latent vitamin C deficiency. Lipids 1973;8:135.

    Article  PubMed  CAS  Google Scholar 

  108. Tangirala RK, Casanada F, Miller E, Witztum JL, Steinberg D, Palinski W. Effect of the antioxidant N,N’-diphenyl 1,4-phenylenediamine (DPPD) on atherosclerosis in apo E-deficient mice. Atheroscler. Thromb. Vasc. Biol. 1995;15:1625-2630.

    Article  CAS  Google Scholar 

  109. Pratico D

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keaney, J.F. (2000). Antioxidants and Atherosclerosis: Animal Studies. In: Keaney, J.F. (eds) Oxidative Stress and Vascular Disease. Developments in Cardiovascular Medicine, vol 224. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4649-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4649-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7103-8

  • Online ISBN: 978-1-4615-4649-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics