Nontarget Effects of Biological Control: What are We Trying to Miss?

  • Jeffrey A. Lockwood

Abstract

The history of pest management in general (Perkins 1982), and biological control in particular (Coppel and Mertins 1977, Caltagirone 1981, Goeden 1988, Van Driesche and Bellows 1996), has been thoroughly analyzed in terms of the dominant practices and how these actions relate to competing philosophies of ecological intervention (e.g., integrated vs. total pest management). While it is evident how environmentalism, as a social phenomenon, has altered the forms and concepts of pest management, it is not so clear how ecology, as a scientific discipline, might change the field of pest management. A great deal of work has been dedicated to the notion of “nontarget” effects, particularly as they relate to chemical control methods, but only recently have we begun to critically assess what exactly constitutes a “nontarget.” From a simple perspective this would seem to be self-evident—all organisms other than the pest are nontargets. However, this tautological approach does little to advance the science of pest management, and it is clear that in practice, the nature of the targets and nontargets is far from simple. The (re)conceptualization of the target can lead to important changes in pest management (e.g., defining the target based on an economic threshold, USDA 1996). Extending these principles to our understanding of nontargets promises to open new avenues for monitoring and protecting those elements that we wish to protect from the hazards of pest management practices in general, and biological control in particular.

Keywords

Assure Compaction Ghost Mollusk Agro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak, P., and K. Chen. 1991. Self-organized criticality. Scientific American 249: 26–33.Google Scholar
  2. Barrett, B. I. P., A. A. Evans, C. M. Ferguson, G. M. Barker, M. R. McNeill, and C. B. Phillips. 1997. Laboratory nontarget host range of the introduced parasitoids Microctonus aethiopoides and M. hyperodae (Hymenoptera: Braconidae) compared with field parasitism in New Zealand. Environ. Entomol. 26: 694–702.Google Scholar
  3. Barrett, B. I. P., A. A. Evans, C. M. Ferguson, M. R. McNeill, J. R. Proffitt, and G. M. Barker. 1998. Curculionoidea (Insecta: Coleoptera) of New Zealand agricultural grassland and lucerne as potential non-target hosts of the parasitoids Microctonus aethiopoides Loan and Microctonus hyperoidae Loan (Hymenoptera: Braconidae). N.Z. J. Zool. 25: 47–63.CrossRefGoogle Scholar
  4. Berryman, A. A., and N. C. Stenseth. 1984. Behavioral catastrophes in biological systems. Behavioral Sci. 29:127–137.CrossRefGoogle Scholar
  5. Busby, F. E. 1994. Rangeland health: new methods to classify, inventory, and monitor rangelands. National Academy Press, Washington, DC, USA.Google Scholar
  6. Caltagirone, L. E. 1981. Landmark examples in classical biological control. Annu. Rev. Entomol. 26:213–32.CrossRefGoogle Scholar
  7. Carson, R. 1962. Silent Spring. Houghton Mifflin, Boston.Google Scholar
  8. Coppel, H. C., and J. W. Mertins. 1977. Biological insect pest suppression. Springer Verlag, New York.CrossRefGoogle Scholar
  9. DeLoach, C. J. 1976. Considerations in introducing foreign biotic agents to control native weeds of range-lands. In Proceedings of the 4th International Symposium, Biological Control of Weeds. Gainesville, FL, USA. p. 39–50.Google Scholar
  10. Ewen, A. B., and M. K. Mukerji. 1980. Evaluation of Nosema locustae (Microsporida) as a control agent of grasshopper populations in Saskatchewan. Journal of Insect Pathology 35:295–303.CrossRefGoogle Scholar
  11. Ferguson, C. M., G. M. Roberts, B.I.P. Barratt, and A. A. Evans. 1994. The distribution of the parasitoid Microctonus aethiopoides Loan (Hymenoptera: Braconidae) in southern south island Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) populations. Proc. 47th N. Z. Plant Protection Conf. p. 261–265.Google Scholar
  12. Goeden, R. D. 1988. A capsule history of biological control of weeds. Biocontr. News Info. 9: 55–61.Google Scholar
  13. Hokkanen, H. M. T., and D. Pimentel. 1984. New approach for selecting biological control agents. Can. Entomol. 116: 1109–1121.CrossRefGoogle Scholar
  14. Hokkanen, H. M. T., and D. Pimentel. 1989. New associations in biological control: theory and practice. Can. Entomol. 121:829–840.CrossRefGoogle Scholar
  15. Howarth, F. G. 1983. Biological control: panacea or Pandora’s box? Proc. Hawaiian Entomol. Soc. 24:239–244.Google Scholar
  16. Howarth, F. G. 1985. Impacts of alien land arthropods and mollusks on native plants and animals in Hawaii. In C. P. Stone and J. M. Scott (eds.), Hawaii’s terrestrial ecosystems: preservation and management. Univ. Hawaii Press, Honolulu. p. 149–179.Google Scholar
  17. Howarth, F. G. 1991. Environmental impacts of classical biological control. Annu. Rev. Entomol. 36:485–509.CrossRefGoogle Scholar
  18. Howarth, F. G. 1992. Environmental impacts of species purposefully introduced for biological control of pests. Pacific Sci. 46:388–389.Google Scholar
  19. Johnson, L. E. 1991. A morally deep world: An essay on moral significance and environmental ethics. Cambridge Univ. Press, New York.Google Scholar
  20. Johnson, D. L., and E. Pavlikova. 1986. Reduction in consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporidia: Nosematidae). J. Invertebrate Pathol. 48:232–238.CrossRefGoogle Scholar
  21. Kogan, M. 1998. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol. 43: 243–270.PubMedCrossRefGoogle Scholar
  22. Lewin, R. 1993. Complexity: life at the edge of chaos. Dent, London, UK.Google Scholar
  23. Lockwood, J. A. 1993a. Environmental issues involved in biological control of rangeland grasshoppers (Orthoptera: Acrididae) with exotic agents. Environ. Entomol. 22:503–518.Google Scholar
  24. Lockwood, J. A. 1993b. Benefits and costs of controlling rangeland grasshoppers (Orthoptera: Acrididae) with exotic organisms: search for a null hypothesis and regulatory compromise. Environ. Entomol. 22:904–914.Google Scholar
  25. Lockwood, J. A. 1996. The ethics of biological control: understanding the moral implications of our most powerful ecological technology. Agric. Human Values 13:2–19.CrossRefGoogle Scholar
  26. Lockwood, J. A. 1997a. Grasshopper population dynamics: a prairie perspective. In S. K. Gangwere, M. C. Muralirangan, and M. Muralirangan (eds.), Bionomics of grasshoppers, katydids and their kin. CAB International, London, UK. p. 103–127.Google Scholar
  27. Lockwood, J. A. 1997b. Rangeland grasshopper ecology. In S. K. Gangwere, M. C. Muralirangan, and M. Muralirangan (eds.), Bionomics of grasshoppers, katydids and their kin. CAB International, London, UK. p. 83–101.Google Scholar
  28. Lockwood, J. A., and L. D. DeBrey. 1990a. Direct and indirect effects of Nosema locustae (Canning) (Microsporida: Nosematidae) on rangeland grasshoppers (Orthoptera: Acrididae). J. Econ. Entomol. 83:377–383.Google Scholar
  29. Lockwood, J. A., and D. R. Lockwood. 1991. Rangeland grasshopper (Orthoptera: Acrididae) population dynamics: insights from catastrophe theory. Environ. Entomol. 20:970–980.Google Scholar
  30. Lockwood, J. A., and D. R. Lockwood. 1993. Catastrophe theory: a unified paradigm for rangeland ecosystem dynamics. J. Range Mgt. 46:282–288.CrossRefGoogle Scholar
  31. Lockwood, D. R., and J. A. Lockwood. 1997. Evidence of self-organized criticality in insect populations. Complexity 2:49–58.CrossRefGoogle Scholar
  32. Lockwood, J. A., and S. P. Schell. Decreasing economic and environmental costs through reduced area and agent insecticide treatments (RAATs) for the control of rangeland grasshoppers: Empirical results and their implications for pest management. J. Orthoptera Res. 6: 19–32.Google Scholar
  33. Louda S. M., D. Kendall, J. Conner, and D. Simberloff. 1997. Ecological effects of an insect introduced for the biological control of weeds. Science 277:1088–1090.CrossRefGoogle Scholar
  34. Miller, M., and G. Aplet. 1993. Biological control: a little knowledge is a dangerous thing. Rutgers Law Rev. 45:285–334.Google Scholar
  35. Office of Technology Assessment. 1993. Harmful non-indigenous species in the United States. OTA-F-565, U.S. Govt. Printing Office, Washington, D.C.Google Scholar
  36. Oma, E. A., and G. B. Hewitt. 1984. Effect of Nosema locustae (Microsporida: Nosematidae) on food consumption in the differential grasshopper (Orthoptera: Acrididae). J. Econ. Entomol. 77:500–501.Google Scholar
  37. Onsager, J. A. 1988. Assessing effectiveness of Nosema locustae for grasshopper control. Montana Agric. Expt. Sta., Montana AgResearch 5:12–16.Google Scholar
  38. Parker, M. A. 1984. Local food depletion and the foraging behavior of a specialist grasshopper, Hesperotettix viridis. Ecology 65:824–35.CrossRefGoogle Scholar
  39. Perkins, J. A. 1982. Insects, experts and the insecticide crisis: the quest for new pest management strategies. Plenum, New York.CrossRefGoogle Scholar
  40. Plotkin, M. J. 1988. The outlook for new agricultural and industrial products from the tropics. In E. O. Wilson (ed.), Biodiversity. Ntl. Acad. Press, Washington, D.C. p. 106–116.Google Scholar
  41. Saunders, P. T. 1980. An introduction to catastrophe theory. Cambridge Univ. Press, NY, USA.CrossRefGoogle Scholar
  42. Stiling, P. 1987. The frequency of density dependence in insect host-parasitoid systems. Ecology 68:844–856.CrossRefGoogle Scholar
  43. Stiling, P. 1988. Density-dependent processes and key factors in insect populations. J. Anim. Ecol. 57:581–593.CrossRefGoogle Scholar
  44. Strong, D. R. 1997. Fear no weevil? Science 277: 1058–1059.CrossRefGoogle Scholar
  45. Sussman, H. J. and R. S. Zahler. 1976. Catastrophe theory as applied to the social and biological sciences: a critique. Synthese 37:117–216.CrossRefGoogle Scholar
  46. Sussman, H. J., and R. S. Zahler. 1978. Critique of applied catastrophe theory in behavioral sciences. Behav. Sci. 23:283–389.CrossRefGoogle Scholar
  47. United States Department of Agriculture. 1996. Grasshopper IPM user handbook. USDA, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Riverdale, Maryland.Google Scholar
  48. Van Driesche, R. G., and T. S. Bellows. 1996. Biological control. Chapman and Hall, New York.CrossRefGoogle Scholar
  49. Waldrop, M. M. 1992. Complexity: The emerging science at the edge of chaos. Viking, London, UK.Google Scholar
  50. Wilson, E. O. (ed.). 1988. Biodiversity. Ntl. Acad. Press, Washington, D.C.Google Scholar
  51. Wilson, E. O. 1992. The diversity of life. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  52. Zeeman, E. C. 1976. Catastrophe theory. Scientific American 234:65–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Jeffrey A. Lockwood
    • 1
  1. 1.Department of EntomologyUniversity of WyomingLaramieUSA

Personalised recommendations