Helium-4 is produced within the Earth by the decay of 238U, 235U and 232Th. Shortly after the discovery of the radioactivity of U and Th, the idea of using the accumulation of He in minerals as a dating tool was proposed by Ernest Rutherford (Hurley, 1954). The U-He dating method for rocks is based on the assumption that U- and Th- bearing minerals quantitatively retain the He produced within them. However, comparison of U-He dates with other methods (e.g., K-Ar) has shown that U-He ages frequently underestimate the true age of the sample as a result of incomplete He retention.


Shallow Aquifer Crustal Rock Regional Aquifer Environmental Tracer Subsurface Hydrology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews J.N. (1985) The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chem. Geol. 49, 339–351.CrossRefGoogle Scholar
  2. Andrews J.N. and Lee D.J. (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. J. Hydrol. 41, 233–252.CrossRefGoogle Scholar
  3. Andrews J.N., Giles I.S., Kay R.L.F. and Lee D.J. (1982) Radioelements, radiogenic helium, and age relationships for groundwaters from the granites at Stripa, Sweden. Geochim. Cosmochim. Acta 46, 1533–1543.CrossRefGoogle Scholar
  4. Andrews J.N., Goldbrunner J.E., Darling W.G., Hooker P.J., Wilson G.B., Youngman M.J., Eichinger L., Rauert W. and Stichler W. (1985) A radiochemical, hydrochemical and dissolved gas study of groundwaters in the Molasses basin of Upper Austria. Earth Planet. Sci. Lett. 73, 317–332.CrossRefGoogle Scholar
  5. Balderer W. and Lehmann B.E. (1989) 3He/4He-ratios as indicators of the origin of helium in groundwater; examples from the deep Nagra boreholes in northern Switzerland. In Water Rock Interaction, ed. D.L. Miles, pp. 45–47. Balkema, Rotterdam.Google Scholar
  6. Ballentine C.J., O’Nions R.K., Oxburgh E.R., Horvath F. and Deak J. (1991) Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin. Earth Planet. Sci. Lett. 105(1–3), 229–246.CrossRefGoogle Scholar
  7. Bayer R., Schlosser P., Bönisch G., Rupp H., Zaucher F. and Zimmek G. (1989) Performance and blank components of a mass spectrometric system for routine measurement of helium istopies and tritium by the 3He ingrowth method. In Sitzungsberichte der Heideiberer Akademie der Wissenschaften. Mathematisch-naturwissenschaftliche Klasse 5, 241–279, Springer Verlag, Heidelberg.Google Scholar
  8. Benson B.B. and Krause D. Jr. (1980) Isotopic fractionation of helium during solution. A probe for the liquid state. J. Soln. Chem. 9, 895–909.CrossRefGoogle Scholar
  9. Bottomley D.J., Gascoyne M. and Kamineni D.C. (1990) The geochemistry, age, and origin of groundwater in a mafic pluton, East Bull Lake, Ontario, Canada. Ceochim. Cosmochim. Acta 54(4), 993–1008.CrossRefGoogle Scholar
  10. Clarke W.B., Jenkins W.B. and Top Z. (1976) Determination of tritium by mass spectrometric measurements of 3He. Int. J. Appl. Rad. hot. 27, 217–225.CrossRefGoogle Scholar
  11. Davis S.N. and DeWeist R.J.M. (1966) Hydrogeology. Wiley, 463 pp.Google Scholar
  12. Fu Wei Huai, Ledoux E. and de Marsily G. (1990) Regional modelling of groundwater flow and salt and enviornmental tracer transport in deep aquifers in the Paris Basin. J. Hydrol. 120, 341–358.CrossRefGoogle Scholar
  13. Gascoyne M., Wuschke D.M. and Durrance E.M. (1992) Fracture detection and groundwater flow characterization using He and Rn in soil gases. Appl. Geochem. 8, 223–233.CrossRefGoogle Scholar
  14. Gascoyne M. and Sheppard M.I. (1993) Evidence of terrestrial discharge of deep groundwater on the Canadian Shield from helium in soil gas. Environ. Sci. Technol. 27(12), 2420–2486.CrossRefGoogle Scholar
  15. Hurley P.M., (1954) The helium age method and the distribution and migration of helium in rocks. In Nuclear Geology, ed. H. Faul, pp. 301–329. Wiley and Sons, New York.Google Scholar
  16. Jahne B., Heinz G. and Dietrich W. (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. 92(C10), 10767–10776.CrossRefGoogle Scholar
  17. Kurz M.D. and Jenkins W.J. (1981) The distribution of helium in oceanic basalt glasses. Earth. Planet. Sci. Lett. 53, 41–54.CrossRefGoogle Scholar
  18. Mamyrin B.A. and Tolstikhin I.N. (1984) Helium Isotopes in Nature. Elsevier, 273 pp.Google Scholar
  19. Marine I.W. (1979) The use of naturally occurring helium to estimate groundwater velocities for studies of geologic storage of radioactive waste. Water Resour. Res. 15, 1130–1136.CrossRefGoogle Scholar
  20. Marty B., Torgersen T., Meynier V., O’Nions R.K. and de Marsily G. (1993) Helium isotope fluxes and groundwater ages in the Dogger Aquifer, Paris Basin. Water Resour. Res. 29(4), 1025–1035.CrossRefGoogle Scholar
  21. Mazor E. and Bosch A. (1991) Dynamics of groundwater in deep basins 4He dating, hydraulic discontinuities, and rates of drainage. In International Conference on Groundwater in Large Sedimentary Basins, pp. 380-389. Australian Water Resources Council Conference Series 20.Google Scholar
  22. Mazor E. and Bosch A. (1992) Helium as a semi-quantitative tool for groundwater dating in the range of 104 to 108 years. Isotopes of Noble Gases as Tracers in Environmental Studies, pp. 163–178. IAEA, Vienna.Google Scholar
  23. O’Nions R.K. and Oxburgh E.R. (1983) Heat and helium in the Earth. Nature 306, 429–431.CrossRefGoogle Scholar
  24. Ozima M. and Podosek F.A. (1983) Noble Gas Geochemistry. Cambridge University Press, Cambridge, 367 pp.Google Scholar
  25. Pearson F.J. Jr, Balderer W., Loosli H.H., Lehmann B.E., Matter A., Peters T.J., Schmassmann H. and Gautschi A. (1991) Applied Isotope Hydrology: A Case Study in Northern Switzerland. Vol. 43, Studies in Environmental Science. Elsevier, Amsterdam.Google Scholar
  26. Poole J.C., McNeill G.W., Langman S.R. and Dennis F. (1997) Analysis of noble gases in water using a quadrupole mass spectrometer in static mode. Appl. Geochem. 12(6), 707–714.CrossRefGoogle Scholar
  27. Schlosser M., Stute P., Sonntag C. and Münnich K.O., (1989) Tritiogenic 3He in shallow groundwater. Earth Planet. Sci. Lett. 94, 245–254.CrossRefGoogle Scholar
  28. Solomon D.K., Hunt A. and Poreda R.J. (1996) Source of radiogenic helium 4 in shallow aquifers: implications for dating young groundwater. Water Resour. Res. 32(6), 1805–1813.CrossRefGoogle Scholar
  29. Spiridonov A.I., Sultankhodzhayer A.N., Beder B.A., Taneyer A.N. and Tyminskiy V.G. (1983) Some problems in the computation of the age of groundwaters. Soviet Hydrology 3, 265–267.Google Scholar
  30. Stephenson M., Schwartz W.J., Melnyk T.W. and Motycka M.F. (1994) Measurement of advective water velocity in lake sediment using natural helium gradients. J. Hydrol. 154, 63–84.CrossRefGoogle Scholar
  31. Stute M., Sonntag C., Deak J. and Schlosser P., (1992) Helium in deep circulating groundwater in the Great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes. Geochim. Cosmochim. Acta 56, 2051–2067.CrossRefGoogle Scholar
  32. Sugisaki R. and Taki K. (1987) Simplified analyses of He, Ne, and Ar dissolved in natural waters. Geochem. J. 21, 23–27.CrossRefGoogle Scholar
  33. Torgersen T. (1980) Controls on pore-fluid concentration of 4He and 222Rn and the calculation of 4He/Rn ages. J. Geochem. Explor. 13, 57–75.CrossRefGoogle Scholar
  34. Torgersen T. and Clarke W.B. (1985) Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochem. Cosmochim. Acta 49, 1211–1218.CrossRefGoogle Scholar
  35. Torgersen T. and Ivey G.N. (1985) Helium accumulation in groundwater, 2, A model for the accumulation of the crustal 4He degassing flux. Geochim. Cosmochim. Acta 49, 2445–2452.CrossRefGoogle Scholar
  36. Torgersen T. (1989) Terrestrial helium degassing fluxes and the atmospheric helium budget: Implications with respect to the degassing processes of the continental crust. Chem. Geol. 79, 1–14.Google Scholar
  37. Torgersen T. and O’Donnell J. (1991) The degassing flux from the solid earth: release by fracturing. Geoph. Res. Lett. 18(5), 951–954.CrossRefGoogle Scholar
  38. Trull T.W., Kurz M.D. and Jenkins W.J. (1991) Diffusion of cosmogenic 3He in olivine and quartz: implications for surface exposure dating. Earth Planet. Sci. Lett. 103, 241–256.CrossRefGoogle Scholar
  39. Turekian K.K. and Wedepohl K.H. (1961) Distribution of the elements in some major units of the Earth’s crust. Geol. Soc. Am. Bull. 72, 175–196.CrossRefGoogle Scholar
  40. Weise S.E. and Moser H. (1987) Groundwater dating with helium isotopes. In Techniques in Water Resources Development, pp. 105–126. IAEA, Vienna.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • D. Kip Solomon
    • 1
  1. 1.University of UtahSalt Lake CityUSA

Personalised recommendations