Advertisement

Microalbuminuria and Cardiovascular Disease

  • S. M. Thomas
  • G. C. Viberti

Abstract

The term microalbuminuria was first coined in 1969 by Keen and Chlouverakis in Guy’s Hospital Reports 1969 [1] when following the development of a radioimmunoassay to detect low concentrations of albumin in the urine [2], urinary albumin excretion rate (AER) was determined in a population of patients with type 2 diabetes. Parving et al in 1974 described that this phenomenon was associated with essential hypertension and in the early 1980’s the predictive value of microalbuminuria for overt nephropathy and renal failure in diabetes was described. Since that time there has been an explosion of interest in microalbuminuria and it’s associations. Microalbuminuria is now defined as an AER of 20–200μg/min or 30 – 300 mg/day.

Keywords

Essential Hypertension Urinary Albumin Excretion Rate Overt Nephropathy Conventional Cardiovascular Risk Factor Hypertensive Parent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Keen H, Chlouverakis C, Fuller J, Jarrett RJ. The concomitants of raised blood sugar: studies in newly-detected hyperglycaemics. II. Urinary albumin excretion, blood pressure and their relation to blood sugar levels. Guys Hospital Reports 118:247–254. 1969Google Scholar
  2. 2.
    Keen H, Chlouverakis C. An immunoassay method for urinary albumin at low concentration. Lancet 1963;ii913–914.CrossRefGoogle Scholar
  3. 3.
    Krolewski AS, Czyzyk A, Janeczko D, Kopczynski J. Mortality from cardiovascular diseases among diabetics. Diabetologia 13:345–350. 1977PubMedCrossRefGoogle Scholar
  4. 4.
    Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16:434–444. 1993PubMedCrossRefGoogle Scholar
  5. 5.
    Jarrett RJ, Viberti GC, Argyropoulos A, Hill RD, Mahmud U, Murrells, TJ. Microalbuminuria predicts mortality in non-insulin-dependent diabetics. Diabet Med 1:17–19. 1984PubMedCrossRefGoogle Scholar
  6. 6.
    Schmitz A, Vaeth M. Microalbuminuria: a major risk factor in non insulin dependent diabetes. A 10 year follow up study of 503 patients. Diabet Med 5:126–134. 1988PubMedCrossRefGoogle Scholar
  7. 7.
    Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE. Eight to nine year mortality in known non-insulin dependent diabetics and controls. Kidney Int 41:731–735. 1992PubMedCrossRefGoogle Scholar
  8. 8.
    Macleod JM, Lutale J, Marshall SM. Albumin excretion and vascular deaths in NIDDM. Diabetologia 38:610–616. 1995PubMedCrossRefGoogle Scholar
  9. 9.
    Forsblom CM, Sane T, Groop PH, Totterman KJ, Kallio M, Saloranta C, Laasonen L, Summanen P, Lepantalo M, Laatikainen L, Matikainen E, Teppo, AM, Koskimies S, Groop L. Risk factors for mortality in Type II (non-insulin-dependent) diabetes: evidence of a role for neuropathy and a protective effect of HLA-DR4. Diabetologia 41:1253–1262. 1998PubMedCrossRefGoogle Scholar
  10. 10.
    Neil A, Hawkins M, Potok M, Thorogood M, Cohen D, Mann J. A prospective population-based study of microalbuminuria as a predictor of mortality in NIDDM. Diabetes Care 16:996–1003. 1993PubMedCrossRefGoogle Scholar
  11. 11.
    Gall MA, Borch-Johnsen K, Hougaard P, Nielsen FS, Parving HH. Albuminuria and poor glycemic control predict mortality in NIDDM. Diabetes 44:1303–1309. 1995PubMedCrossRefGoogle Scholar
  12. 12.
    Mattock MB, Barnes DJ, Viberti G, Keen H, Burt D, Hughes JM, Fitzgerald, AP, Sandhu B, Jackson PG. Microalbuminuria and coronary heart disease in NIDDM: an incidence study. Diabetes 47:1786–1792. 1998PubMedCrossRefGoogle Scholar
  13. 13.
    Uusitupa MI, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K. Ten-year cardiovascular mortality in relation to risk factors and abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects. Diabetologia 36:1175–1184. 1993PubMedCrossRefGoogle Scholar
  14. 14.
    Mather HM, Chaturvedi N, Kehely AM. Comparison of prevalence and risk factors for microalbuminuria in South Asians and Europeans with type 2 diabetes mellitus. Diabet Med 15:672–677. 1998PubMedCrossRefGoogle Scholar
  15. 15.
    Tindall H, Martin P, Nagi D, Pinnock S, Stickland M, Davies JA. Higher levels of microproteinuria in Asian compared with European patients with diabetes mellitus and their relationship to dietary protein intake and diabetic complications. Diabet Med 11:37–41. 1994PubMedCrossRefGoogle Scholar
  16. 16.
    Abuaisha B, Kumar S, Malik R, Boulton AJ. Relationship of elevated urinary albumin excretion to components of the metabolic syndrome in non-insulin-dependent diabetes mellitus. Diabetes Research & Clinical Practice 39:93–99. 1998CrossRefGoogle Scholar
  17. 17.
    Araki S, Haneda M, Togawa M, Sugimoto T, Shikano T, Nakagawa T, Isono, M, Hidaka H, Kikkawa R. Microalbuminuria is not associated with cardiovascular death in Japanese NIDDM. Diabetes Research & Clinical Practice 35:35–40. 1997CrossRefGoogle Scholar
  18. 18.
    Araki S, Kikkawa R, Haneda M, Koya D, Togawa M, Liang PM, Shigeta Y. Microalbuminuria cannot predict cardiovascular death in Japanese subjects with non-insulin-dependent diabetes mellitus. Journal of Diabetes & its Complications 9:323–325. 1995CrossRefGoogle Scholar
  19. 19.
    Dineen SF, Gerstein HC. The Association of Microalbuminuria and Mortality in Non-Insulin Dependent Diabetes Mellitus. Arch Intern Med 1997;1571413–1571418.Google Scholar
  20. 20.
    Viberti GC, Hill RD, Jarrett RJ, Argyropoulos A, Mahmud U, Keen H. Microalbuminuria as a predictor of clinical nephropathy in insulin-dependent diabetes mellitus. Lancet 1:1430–1432. 1982PubMedCrossRefGoogle Scholar
  21. 21.
    Messent JW, Elliott TG, Hill RD, Jarrett RJ, Keen H, Viberti GC. Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney Int 41:836–839. 1992PubMedCrossRefGoogle Scholar
  22. 22.
    Rossing P, Hougaard P, Borch-Johnsen K, Parving HH. Predictors of mortality in insulin dependent diabetes: 10 year observational follow up study. BMJ 313:779–784. 1996PubMedCrossRefGoogle Scholar
  23. 23.
    Jensen T, Richter EA, Feldt-Rasmussen B, Kelbaek H, Deckert T. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion. British Medical Journal Clinical Research Ed. 296:1352–1354. 1988PubMedCrossRefGoogle Scholar
  24. 24.
    Earle KA, Mishra M, Morocutti A, Barnes D, Stephens E, Chambers J, Viberti GC. Microalbuminuria as a marker of silent myocardial ischaemia in IDDM patients. Diabetologia 39:854–856. 1996PubMedGoogle Scholar
  25. 25.
    Sato A, Tarnow L, Parving HH. Prevalence of left ventricular hypertrophy in Type 1 diabetic patients with diabetic nephropathy. Diabetologia 1999;42(1):76–80.PubMedCrossRefGoogle Scholar
  26. 26.
    Spring MW, Raptis AE, Chambers J, Viberti G.C. Left ventricular structure and function are associated with microalbuminuria independently of blood pressure in type 2 diabetes. [Abstract] Diabetes 1997;46(109)AO426Google Scholar
  27. 27.
    Jensen JS, Feldt-Rasmussen B, Borch-Johnsen K, Clausen P, Appleyard M, Jensen G. Microalbuminuria and its relation to cardiovascular disease and risk factors. A population-based study of 1254 hypertensive individuals. Journal of Human Hypertension 11:727–732. 1997PubMedCrossRefGoogle Scholar
  28. 28.
    Jensen JS, Borch-Johnsen K, Feldt-Rasmussen B, Appleyard M, Jensen G. Urinary albumin excretion and history of acute myocardial infarction in a cross-sectional population study of 2,613 individuals. Journal of Cardiovascular Risk 4:121–125. 1997PubMedCrossRefGoogle Scholar
  29. 29.
    Yudkin JS, Forrest RD, Jackson CA. Microalbuminuria as predictor of vascular disease in non-diabetic subjects. Islington Diabetes Survey. Lancet 2:530–533. 1988PubMedCrossRefGoogle Scholar
  30. 30.
    Winocour PH, Harland JO, Millar JP, Laker MF, Alberti KG. Microalbuminuria and associated cardiovascular risk factors in the community. Atherosclerosis 93:71–81. 1992PubMedCrossRefGoogle Scholar
  31. 31.
    Haffner SM, Stern MP, Gruber MK, Hazuda HP, Mitchell BD, Patterson JK. Microalbuminuria. Potential marker for increased cardiovascular risk factors in nondiabetic subjects? Arteriosclerosis 10:727–731. 1990PubMedCrossRefGoogle Scholar
  32. 32.
    Parving HH, Mogensen CE, Jensen HA, Evrin PE. Increased urinary albumin-excretion rate in benign essential hypertension. Lancet 1:1190–1192. 1974PubMedCrossRefGoogle Scholar
  33. 33.
    Ljungman S. Microalbuminuria in essential hypertension. Am J Hypertens 3:956–960. 1990PubMedGoogle Scholar
  34. 34.
    Gerber LM, Shmukler C, Alderman MH. Differences in urinary albumin excretion rate between normotensive and hypertensive, white and nonwhite subjects. Arch Intern Med 152:373–377. 1992PubMedCrossRefGoogle Scholar
  35. 35.
    Bigazzi R, Bianchi S, Campese VM, Baldari G. Prevalence of microalbuminuria in a large population of patients with mild to moderate essential hypertension. Nephron 61:94–97. 1992PubMedCrossRefGoogle Scholar
  36. 36.
    Hishiki S, Tochikubo O, Miyajima E, Ishii M. Circadian variation of urinary microalbumin excretion and ambulatory blood pressure in patients with essential hypertension. J Hypertens 16:2101–2108. 1998PubMedCrossRefGoogle Scholar
  37. 37.
    Bigazzi R, Bianchi S, Baldari D, Sgherri G, Baldari G, Campese VM. Microalbuminuria in salt-sensitive patients. A marker for renal and cardiovascular risk factors. Hypertension 23:195–199. 1994PubMedCrossRefGoogle Scholar
  38. 38.
    Bigazzi R, Bianchi S, Baldari G, Campese VM. Clustering of cardiovascular risk factors in salt-sensitive patients with essential hypertension: role of insulin. Am J Hypertens 9:24–32. 1996PubMedCrossRefGoogle Scholar
  39. 39.
    Morimoto A, Uzu T, Fujii T, Nishimura M, Kuroda S, Nakamura S, Inenaga, T, Kimura G. Sodium sensitivity and cardiovascular events in patients with essential hypertension. Lancet 350:1734–1737. 1997PubMedCrossRefGoogle Scholar
  40. 40.
    Bianchi S, Bigazzi R, Baldari G, Sgherri G, Campese VM. Diurnal variations of blood pressure and microalbuminuria in essential hypertension. Am J Hypertens 7:23–29. 1994PubMedGoogle Scholar
  41. 41.
    Bigazzi R, Bianchi S. Microalbuminuria as a marker of cardiovascular and renal disease in essential hypertension. Nephrology, Dialysis, Transplantation 10Suppl 6:10–14. 1995PubMedCrossRefGoogle Scholar
  42. 42.
    Pontremoli R, Sofia A, Ravera M, Nicolella C, Viazzi F, Tirotta A, Ruello N, Tomolillo C, Castello C, Grillo G, Sacchi G, Deferrari G. Prevalence and clinical correlates of microalbuminuria in essential hypertension: the MAGIC Study. Microalbuminuria: A Genoa Investigation on Complications. Hypertension 30:1135–1143. 1997PubMedCrossRefGoogle Scholar
  43. 43.
    Cirillo M, Senigalliesi L, Laurenzi M, Alfieri R, Stamler J, Stamler R, Panarelli W, De Santo NG. Microalbuminuria in nondiabetic adults: relation of blood pressure, body mass index, plasma cholesterol levels, and smoking: The Gubbio Population Study. Arch Intern Med 158:1933–1939. 1998PubMedCrossRefGoogle Scholar
  44. 44.
    Mykkanen L, Zaccaro DJ, Wagenknecht LE, Robbins DC, Gabriel M, Haffner, SM. Microalbuminuria is associated with insulin resistance in nondiabetic subjects: the insulin resistance atherosclerosis study. Diabetes 47:793–800. 1998PubMedCrossRefGoogle Scholar
  45. 45.
    Pedrinelli R, Giampietro O, Carmassi F, Melillo E, Dell’Omo G, Catapano G, Matteucci E, Talarico L, Morale M, De Negri F, et al. Microalbuminuria and endothelial dysfunction in essential hypertension. Lancet 344:14–18. 1994PubMedCrossRefGoogle Scholar
  46. 46.
    Agewall S, Fagerberg B, Attvall S, Ljungman S, Urbanavicius V, Tengborn, L, Wikstrand J. Microalbuminuria, insulin sensitivity and haemostatic factors in non-diabetic treated hypertensive men. Risk Factor Intervention Study Group. J Intern Med 237:195–203. 1995Google Scholar
  47. 47.
    Agewall S, Persson B, Samuelsson O, Ljungman S, Herlitz H, Fagerberg B. Microalbuminuria in treated hypertensive men at high risk of coronary disease. The Risk Factor Intervention Study Group. J Hypertens 11:461–469. 1993Google Scholar
  48. 48.
    Bigazzi R, Bianchi S, Nenci R, Baldari D, Baldari G, Campese VM. Increased thickness of the carotid artery in patients with essential hypertension and microalbuminuria. Journal of Human Hypertension 9:827–833. 1995PubMedGoogle Scholar
  49. 49.
    Ruilope LM, Campo C, Rodriguez-Artalejo F, Lahera V, Garcia-Robles R, Rodicio JL. Blood pressure and renal function: therapeutic implications. J Hypertens 14:1259–1263. 1996PubMedCrossRefGoogle Scholar
  50. 50.
    Tomura S, Kawada K, Saito K, Lin YL, Endou K, Hirano C, Yanagi H, Tsuchiya S, Shiba K. Prevalence of microalbuminuria and relationship to the risk of cardiovascular disease in the Japanese population. Am J Nephrol 19:13–20. 1999PubMedCrossRefGoogle Scholar
  51. 51.
    Nilsson T, Svensson A, Lapidus L, Lindstedt G, Nystrom E, Eggertsen R. The relations of microalbuminuria to ambulatory blood pressure and myocardial wall thickness in a population. J Intern Med 244:55–59. 1998PubMedCrossRefGoogle Scholar
  52. 52.
    Agrawal B, Berger A, Wolf K, Luft FC. Microalbuminuria screening by reagent strip predicts cardiovascular risk in hypertension. J Hypertens 14:223–238. 1996Google Scholar
  53. 53.
    Mykkanen L, Zaccaro DJ, O’Leary DH, Howard G, Robbins DC, Haffner SM. Microalbuminuria and carotid artery intima-media thickness in nondiabetic and NIDDM subjects. The Insulin Resistance Atherosclerosis Study (IRAS). Stroke 28:1710–1716. 1997PubMedGoogle Scholar
  54. 54.
    Bigazzi R, Bianchi S, Baldari D, Campese VM. Microalbuminuria predicts cardiovascular events and renal insufficiency in patients with essential hypertension. J Hypertens 16:1325–1333. 1998PubMedCrossRefGoogle Scholar
  55. 55.
    Agewall S, Wikstrand J, Ljungman S, Fagerberg B. Usefulness of microalbuminuria in predicting cardiovascular mortality in treated hypertensive men with and without diabetes mellitus. Risk Factor Intervention Study Group. Am J Cardiol 80:164–169. 1997PubMedCrossRefGoogle Scholar
  56. 56.
    Agrawal B, Wolf K, Berger A, Luft FC. Effect of antihypertensive treatment on qualitative estimates of microalbuminuria. Journal of Human Hypertension 10:551–555. 1996PubMedGoogle Scholar
  57. 57.
    Erley CM, Risler T. Microalbuminuria in primary hypertension: is it a marker of glomerular damage? Nephrology, Dialysis, Transplantation 9:1713–1715. 1994PubMedGoogle Scholar
  58. 58.
    Titov VN, Tarasov AV, Sokolova RI, Volkova El, Arabidze, GG. [A comparison of selective microproteinuria with histomorphology of the kidneys in patients with arterial hypertension]. [Russian]. Laboratornoe Delo:43–48. 1989Google Scholar
  59. 59.
    Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE. Microalbuminuria as predictor of increased mortality in elderly people. BMJ 300:297–300. 1990PubMedCrossRefGoogle Scholar
  60. 60.
    Kuusisto J, Mykkanen L, Pyorala K, Laakso M. Hyperinsulinemic microalbuminuria. A new risk indicator for coronary heart disease. Circulation 91:831–837. 1995PubMedCrossRefGoogle Scholar
  61. 61.
    Mattock MB, Morrish NJ, Viberti GC, Keen H, Fitzgerald AP, Jackson G. Prospective study of microalbuminuria as predictor of mortality in NIDDM. Diabetes 41:736–741. 1992PubMedCrossRefGoogle Scholar
  62. 62.
    Earle K, Viberti GC. Familial, hemodynamic and metabolic factors in the predisposition to diabetic kidney disease. Kidney Int 45:434–437. 1994PubMedCrossRefGoogle Scholar
  63. 63.
    Earle KA, Walker J, Hill C, Viberti GC. Familial clustering of cardiovascular disease in patients with insulin-dependent diabetes and nephropathy. N Engl J Med 326:673–677. 1992PubMedCrossRefGoogle Scholar
  64. 64.
    Grunfeld B, Perelstein E, Simsolo R, Gimenez M, Romero, JC. Renal functional reserve and microalbuminuria in offspring of hypertensive parents. Hypertension 15:257–261. 1990PubMedCrossRefGoogle Scholar
  65. 65.
    Fauvel JP, Hadj-Aissa A, Laville M, Fadat G, Labeeuw M, Zech P, Pozet N. Microalbuminuria in normotensives with genetic risk of hypertension [letter]. Nephron 57:375–376. 1991PubMedCrossRefGoogle Scholar
  66. 66.
    The Microalbuminuria Collaborative Study Group United Kingdom. Predictors of development of microalbuminuria in patients with type 1 diabetes: a seven year prospective study. Diabet Med 1999;16(11):918–925.CrossRefGoogle Scholar
  67. 67.
    Jensen T, Stender S, Deckert T. Abnormalities in plasmas concentrations of lipoproteins and fibrinogen in type 1 (insulin-dependent) diabetic patients with increased urinary albumin excretion. Diabetologia 31:142–145. 1988PubMedCrossRefGoogle Scholar
  68. 68.
    Groop PH, Elliott T, Ekstrand A, Franssila-Kallunki A, Friedman R, Viberti GC, Taskinen MR. Multiple lipoprotein abnormalities in type I diabetic patients with renal disease. Diabetes 45:974–979. 1996PubMedCrossRefGoogle Scholar
  69. 69.
    Groop PH, Viberti GC, Elliott TG, Friedman R, Mackie A, Ehnholm C, Jauhiainen M, Taskinen MR. Lipoprotein(a) in type 1 diabetic patients with renal disease. Diabet Med 11:961–967. 1994PubMedCrossRefGoogle Scholar
  70. 70.
    Jones SL, Close CF, Mattock MB, Jarrett RJ, Keen H, Viberti GC. Plasma lipid and coagulation factor concentrations in insulin dependent diabetics with microalbuminuna. BMJ 298:487–490. 1989PubMedCrossRefGoogle Scholar
  71. 71.
    Lahdenpera S, Groop PH, Tilly-Kiesi M, Kuusi T, Elliott TG, Viberti GC, Taskinen MR. LDL subclasses in IDDM patients: relation to diabetic nephropathy. Diabetologia 37:681–688. 1994PubMedCrossRefGoogle Scholar
  72. 72.
    Campese VM, Bianchi S, Bigazzi R. Hypertension, hyperlipidemia and microalbuminuria. Contrib Nephrol 120:11–21. 1997PubMedCrossRefGoogle Scholar
  73. 73.
    Yip J, Mattock MB, Morocutti A, Sethi M, Trevisan R, Viberti G. Insulin resistance in insulin-dependent diabetic patients with microalbuminuria. Lancet 342:883–887. 1993PubMedCrossRefGoogle Scholar
  74. 74.
    Bianchi S, Bigazzi R, Quinones Galvan A, Muscelli E, Baldari G, Pecori, N, Ciociaro D, Ferrannini E, Natali A. Insulin resistance in microalbuminuric hypertension. Sites and mechanisms. Hypertension 26:789–795. 1995PubMedCrossRefGoogle Scholar
  75. 75.
    Gruden G, Pagano G, Romagnoli R, Frezet D, Olivetti C, Cavallo-Perin P. Thrombomodulin levels in insulin-dependent diabetic patients with microalbuminuria. Diabet Med 12:258–260. 1995PubMedCrossRefGoogle Scholar
  76. 76.
    Gruden G, Cavallo-Perin P, Bazzan M, Stella S, Vuolo A, Pagano G. PAI-1 and factor VII activity are higher in IDDM patients with microalbuminuria. Diabetes 43:426–429. 1994PubMedCrossRefGoogle Scholar
  77. 77.
    Stehouwer CD, Fischer HR, van Kuijk AW, Polak BC, Donker AJ. Endothelial dysfunction precedes development of microalbuminuria in IDDM. Diabetes 44:561–564. 1995PubMedCrossRefGoogle Scholar
  78. 78.
    Feldt-Rasmussen B. Increased Transcapillary Escape of albumin in Type 1 (insulin-dependent) diabetic patients with microalbuminuria. Diabetologia 29:282–286. 1986PubMedCrossRefGoogle Scholar
  79. 79.
    Nannipieri M, Rizzo L, Rapuano A, Pilo A, Penno G, Navalesi R. Increased transcapillary escape rate of albumin in microalbuminuric type II diabetic patients. Diabetes Care 18:1–9. 1995PubMedCrossRefGoogle Scholar
  80. 80.
    Jensen JS, Borch-Johnsen K, Jensen G, Feldt-Rasmussen B. Microalbuminuria reflects a generalized transvascular albumin leakiness in clinically healthy subjects. Clin Sci (Colch) 88:629–633. 1995Google Scholar
  81. 81.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329:977–986. 1993CrossRefGoogle Scholar
  82. 82.
    UKPDS Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 352:837–853. 1998CrossRefGoogle Scholar
  83. 83.
    Gaede P, Vedel P, Parving HH, Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet 353:617–622. 1999PubMedCrossRefGoogle Scholar
  84. 84.
    Weidmann P, Schneider M, Bohlen L. Therapeutic efficacy of different antihypertensive drugs in human diabetic nephropathy: an updated meta-analysis. Nephrology, Dialysis, Transplantation 10 Suppl 9:39–45. 1995PubMedGoogle Scholar
  85. 85.
    Bianchi S, Bigazzi R, Baldari G, Campese VM. Microalbuminuria in patients with essential hypertension. Effects of an angiotensin converting enzyme inhibitor and of a calcium channel blocker. Am J Hypertens 4:291–296. 1991PubMedGoogle Scholar
  86. 86.
    Ruilope LM, Alcazar JM, Hernandez E, Praga M, Lahera V, Rodicio JL. Long-term influences of antihypertensive therapy on microalbuminuria in essential hypertension. Kidney International — Supplement 45:S 171–1713. 1994Google Scholar
  87. 87.
    UKPDS Prospective Diabetes Study (UKPDS) Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 317:703–713. 1998CrossRefGoogle Scholar
  88. 88.
    Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of Ramipril on csardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 2000;355253–355259.Google Scholar
  89. 89.
    Estacio RO, Jeffers BW, Hiatt WR, Biggerstaff SL, Gifford N, Schrier RW. The effect of nisoldipine as compared with enalapril on cardiovascular outcomes in patients with non-insulin-dependent diabetes and hypertension. N Engl J Med 338:645–652. 1998PubMedCrossRefGoogle Scholar
  90. 90.
    Tatti P, Pahor M, Byington RP, Di Mauro P, Guarisco R, Strollo G, Strollo F. Outcome results of the Fosinopril Versus Amlodipine Cardiovascular Events Randomized Trial (FACET) in patients with hypertension and NIDDM [see comments]. Diabetes Care 21:597–603. 1998PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • S. M. Thomas
    • 1
  • G. C. Viberti
    • 1
  1. 1.Department of EndocrinologyDiabetes & Internal Medicine Division of Medicine GKT School of Medicine Guy’s Hospital Campus KCLLondonUK

Personalised recommendations