Skip to main content

Pathogenesis of Diabetic Glomerulopathy: The Role of Glomerular Hemodynamic Factors

  • Chapter
The Kidney and Hypertension in Diabetes Mellitus

Abstract

Glomerular hyperfiltration in insulin-dependent (Type 1) diabetes mellitus of short duration has been recognized for many years [1–3], with increments in renal plasma flow (RPF) and nephromegaly [3]. With the finding of early hyperfiltration, Stalder and Schmid proposed that these early functional changes may predispose to the subsequent development of diabetic glomerulopathy [1]. Further support for the hypothesis that renal hyperperfusion and hyperfiltration contribute to diabetic glomerulopathy came from the finding of diabetic glomerulopathy only in the non-stenosed kidney in the setting of unilateral renal artery stenosis [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stalder G, Schmid R. 1959. Severe functional disorders of glomerular capillaries and renal hemodynamics in treated diabetes mellitus during childhood. Ann Paediatr, 193:129–138.

    PubMed  CAS  Google Scholar 

  2. Ditzel J, Junker K. 1972. Abnormal glomerular filtration rate, renal plasma flow and renal protein excretion in recent and short-term diabetes. Br Med J, 2:13–19.

    Article  PubMed  CAS  Google Scholar 

  3. Mogensen CE, Andersen MJF. 1973. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes, 22:706–712.

    PubMed  CAS  Google Scholar 

  4. Berkman J, Rifkin H. 1973. Unilateral nodular diabetic glomerulosclerosis (Kimmelstiel-Wilson). Metabolism, 22:715–722.

    Article  PubMed  CAS  Google Scholar 

  5. Vora J, Dolben J, Dean J, Williams JD, Owens DR, Peters JR. 1992. Renal hemodynamics in newly presenting non-insulin-dependent diabetics. Kidney Int, 41:829–835.

    Article  PubMed  CAS  Google Scholar 

  6. Myers BD, Nelson RG, Williams GW, et al. 1991. Glomerular function in Pima Indians with non-insulin-dependent diabetes mellitus of recent origin. J Clin Invest, 88:524–530.

    Article  PubMed  CAS  Google Scholar 

  7. Palmisano JJ, Lebovitz HE. 1989. Renal function in Black Americans with type II diabetes. J Diab Compl, 3:40–44.

    CAS  Google Scholar 

  8. Nelson RG, Bennett PH, Beck GJ, Tan M, Knowler WC, Mitch WE, Hirschman GH, Myers BD. 1996. Development and progression of renal disease in Pima Indians with non-insulin-dependent diabetes mellitus. New Engl J Med, 335:1636–1642.

    Article  PubMed  CAS  Google Scholar 

  9. Nowack R, Raum E, Blum W, Ritz E. 1992. Renal hemodynamics in recent-onset Type II diabetes. Am J Kidney Dis, 20:342–347

    PubMed  CAS  Google Scholar 

  10. Ritz E, Stefanski A. 1996. Diabetic nephropathy in Type II diabetes. Am J Kidney Dis, 27:167–194.

    Article  PubMed  CAS  Google Scholar 

  11. Wirta O, Pasternack A, Laippala P, Turjanmaa V. 1996. Glomerular filtration rate and kidney size after six years disease duration in non-insulin-dependent diabetic subjects. Clin Nephrol, 45:10–71.

    PubMed  CAS  Google Scholar 

  12. Nelson RG, Tan M, Beck GJ, Bennett PH, Knowler WC, Mitch WE, Blouch K, Myers BD. 1999. Changing glomerular filtration with progression from impaired glucose tolerance to Type II diabetes mellitus. Diabetologia, 42:90–93.

    Article  PubMed  CAS  Google Scholar 

  13. Hall JE, Brands MW, Henegar JR, Sheck EW. 1998. Abnormal kidney function as a cause and a consequence of obesity hypertension. Clin Exp Pharmacol Physiol, 25:58–64.

    Article  PubMed  CAS  Google Scholar 

  14. Sackmann H, Tran-Van T, Tack T, Hanaire-Broutin H, Tauber JP, Ader JL. 1998. Renal functional reserve in IDDM patients. Diabetologia, 41:86–93.

    Article  PubMed  CAS  Google Scholar 

  15. Mogensen CE. 1986. Early glomerular hyperfiltration in insulin-dependent diabetics and late nephropathy. Scand J Clin Lab Invest, 46:201–206.

    Article  PubMed  CAS  Google Scholar 

  16. Rudberg S, Persson B, Dahlquist G. 1992. Increased glomerular filtration rate as a predictor of diabetic nephropathy — an 8 year prospective study. Kidney Int, 41:822–828.

    Article  PubMed  CAS  Google Scholar 

  17. Lervang H-H, Jensen S, Borchner-Mortensen J, Ditzel J. 1988. Early glomerular hyperfiltration and the development of late nephropathy in type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 31:723–729.

    Article  PubMed  CAS  Google Scholar 

  18. Yip JW, Jones SL, Wiseman M, Hill C, Viberti GC. 1996. Glomerular hyperfiltration in the prediction of nephropathy in IDDM. A 10-year followup study. Diabetes, 45:1729–1733.

    Article  PubMed  CAS  Google Scholar 

  19. Mogensen CE. 1994. Glomerular hyperfiltration in human diabetes. Diabetes Care, 17:770–775.

    PubMed  CAS  Google Scholar 

  20. Vora JP, Dolben J, Williams JD, Peters JR, Owens DR. 1993. Impact of initial treatment on renal function in newly-diagnosed type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 36:734–740

    Article  PubMed  CAS  Google Scholar 

  21. Anderson S. 1992. Antihypertensive therapy in experimental diabetes. J Am Soc Nephrol, 3(Suppl 1):S86–S90.

    PubMed  CAS  Google Scholar 

  22. O’Donnell MP, Kasiske BL, Keane WF. 1986. Glomerular hemodynamics and structural alterations in experimental diabetes. FASEB J, 2:2339–2347.

    Google Scholar 

  23. Park SK, Meyer TW. 1995. The effect of hyperglycemia on glomerular function in obese Zucker rats. J Lab Clin Med, 125:501–507.

    PubMed  CAS  Google Scholar 

  24. Hostetter TH, Troy JL, Brenner BM. 1981. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int, 19:410–415.

    Article  PubMed  CAS  Google Scholar 

  25. Zatz R, Meyer TW, Rennke HG, Brenner BM. 1985. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci (USA), 82:5963–5967.

    Article  CAS  Google Scholar 

  26. Zatz R, Dunn BR, Meyer TW, Anderson S, Rennke HG, Brenner BM. 1986. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest, 77:1925–1930.

    Article  PubMed  CAS  Google Scholar 

  27. Seyer-Hansen K. 1983. Renal hypertrophy in experimental diabetes mellitus. Kidney Int, 23:643–646.

    Article  PubMed  CAS  Google Scholar 

  28. Seyer-Hansen K, Hansen J, Gundersen HJG. 1980. Renal hypertrophy in experimental diabetes. A morphometric study. Diabetologia, 18:501–505.

    Article  PubMed  CAS  Google Scholar 

  29. Steffes MW, Brown DM, Basgen JM, Mauer SM. 1980. Amelioration of mesangial volume and surface alterations following islet transplantation in diabetic rats. Diabetes, 29:509–515.

    PubMed  CAS  Google Scholar 

  30. Mauer SM, Michael AF, Fish AJ, Brown DM. 1972. Spontaneous immunoglobulin and complement deposition in glomeruli of diabetic rats. Lab Invest, 27:488–494.

    PubMed  CAS  Google Scholar 

  31. O’Donnell MP, Kasiske BL, Daniels FX, Keane WF. 1986. Effect of nephron loss on glomerular hemodynamics and morphology in diabetic rats. Diabetes, 35:1011–1015.

    Article  CAS  Google Scholar 

  32. Mauer SM, Steffes MW, Azar S, Sandberg SK, Brown DM. 1978. The effect of Goldblatt hypertension on development of the glomerular lesions of diabetes mellitus in the rat. Diabetes, 27:738–744.

    Article  PubMed  CAS  Google Scholar 

  33. Christiansen JS, Gammelgaard J, Tronier B, Svendsen PA, Parving H-H. 1982. Kidney function and size in diabetics before and during initial insulin treatment. Kidney Int, 21:683–688.

    Article  PubMed  CAS  Google Scholar 

  34. Parving H-H, Christiansen JS, Noer I, Tronier B, Mogensen CE. 1980. The effect of glucagon infusion on kidney function in short-term insulin-dependent juvenile diabetics. Diabetologia, 19:350–354.

    Article  PubMed  CAS  Google Scholar 

  35. Christiansen JS, Gammelgaard J, Orskov H, Andersen AR, Telmer S, Parving H-H. 1980. Kidney function and size in normal subjects before and during growth hormone administration for one week. Eur J Clin Invest, 11:487–490.

    Article  Google Scholar 

  36. Vora J, Dolben J, Williams JD, Peters JR, Owens DR. 1993. Impact of initial treatment on renal function in newly-diagnosed Type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia, 36:734–740.

    Article  PubMed  CAS  Google Scholar 

  37. Stackhouse S, Miller PL, Park SK, Meyer TW. 1990. Reversal of glomerular hyperfiltration and renal hypertrophy by blood glucose normalization in diabetic rats. Diabetes, 39:989–995.

    Article  PubMed  CAS  Google Scholar 

  38. Scholey JW, Meyer TW. 1989. Control of glomerular hypertension by insulin administration in diabetic rats. J Clin Invest, 83:1384–1389.

    Article  PubMed  CAS  Google Scholar 

  39. Sjoquist M, Huang W, Johansson BL. 1998. Effects of C-peptide on renal function at the early stage of experimental diabetes. Kidney Int, 54:758–764.

    Article  PubMed  CAS  Google Scholar 

  40. Tucker BJ, Anderson CM, Thies RS, Collins RC, Blantz RC. 1992. Glomerular hemodynamic alterations during acute hyperinsulinemia in normal and diabetic rats. Kidney Int, 42:1160–1168.

    Article  PubMed  CAS  Google Scholar 

  41. Sabbatini M, Sansone G, Uccello F, Giliberti A, Conte G, Andreucci VE. 1992. Early glycosylation products induce glomerular hyperfiltration in normal rats. Kidney Int, 42:875–881.

    Article  PubMed  CAS  Google Scholar 

  42. Ortola FV, Ballermann BJ, Anderson S, Mendez RE, Brenner BM. 1987. Elevated plasma atrial natriuretic peptide levels in diabetic rats. J Clin Invest, 80:670–674.

    Article  PubMed  CAS  Google Scholar 

  43. Zhang PL, Mackenzie HS, Troy JL, Brenner BM. 1994. Effects of an atrial natriuretic peptide receptor antagonist on glomerular hyperfiltration in diabetic rats. J Am Soc Nephrol, 4:1564–1570.

    PubMed  CAS  Google Scholar 

  44. Feldt-Rasmussen B. 1987. Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in Type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 30:610–617.

    PubMed  CAS  Google Scholar 

  45. O’Hare JA, Ferris BJ, Brady D, Twomey B, O’Sullivan DJ. 1985. Exchangable sodium and renin in hypertensive diabetic patients with and without nephropathy. Hypertension, 7[Suppl II]: II43–II48.

    Article  CAS  Google Scholar 

  46. Fioretto P, Sambataro M, Cipollina MR, Giorato C, Carraro A, Opocher G, Sacerdoti D, Brocco E, Morocutti A, Mantero F. 1992. Role of atrial natriuretic peptide in the pathogenesis of sodium retention in IDDM with and without glomerular hyperfiltration. Diabetes, 41:936–945.

    Article  PubMed  CAS  Google Scholar 

  47. Bank N, Lahorra MA, Aynedjian HS, Wilkes BM. 1988. Sodium restriction corrects hyperfiltration of diabetes. Am J Physiol, 254: F668–F676.

    PubMed  CAS  Google Scholar 

  48. Allen TJ, Waldron MJ, Casley D, Jerums G, Cooper ME. 1997. Salt restriction reduces hyperfiltration, renal enlargement, and albuminuria in experimental diabetes. Diabetes, 46:119–124.

    CAS  Google Scholar 

  49. Deng A, Baylis C. 1993. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient. Am J Physiol, 264: F212–F215.

    PubMed  CAS  Google Scholar 

  50. Bank N, Aynedjian HS. 1993. Role of EDRF (nitric oxide) in diabetic renalhyperfiltration. Kidney Int, 43:1306–1312.

    Article  PubMed  CAS  Google Scholar 

  51. Tolins JP, Shultz PJ, Raij L, Brown DM, Mauer SM. 1993. Abnormal renal hemodynamic response to reduced renal perfusion pressure in diabetic rats: role of NO. Am J Physiol, 265: F886–F895.

    PubMed  CAS  Google Scholar 

  52. Mattar AL, Fujihara CK, Ribeiro MO, de Nucci G, Zatz R. 1996. Renal effects of acute and chronic nitric oxide inhibition in experimental diabetes. Nephron, 74:136–143

    Article  PubMed  CAS  Google Scholar 

  53. Komers R, Allen TJ, Cooper ME. 1994. Role of endothelium-derived nitric oxide in the pathogenesis of the renal hemodynamic changes of experimental diabetes. Diabetes, 43:1190–1197.

    Article  PubMed  CAS  Google Scholar 

  54. Wilcox CS, Welch WJ, Murad F, Gross SS, Taylor G, Levi R, Schmidt HH. 1992. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci, 89: 11993–11997.

    Article  PubMed  CAS  Google Scholar 

  55. Komers R, Oyama TT, Chapman JG, Allison KM, Anderson S. 2000. Effects of systemic inhibition of neuronal nitric oxide synthase (NOS1) in diabetic rats. Hypertension, 35: 655–661.

    Article  PubMed  CAS  Google Scholar 

  56. Komers R, Lindsley JN, Oyama TT, Allison KM, Anderson S. Role of neuronal nitric oxide synthase (NOS1) in the pathogenesis of renal hemodynamic changes in diabetes. Submitted.

    Google Scholar 

  57. Blantz RC, Peterson OW, Gushwa L, Tucker BJ. 1982. Effect of modest hyperglycemia on tubuloglomerular feedback activity. Kidney Int, 22(Suppl 12):S206–S212.

    Google Scholar 

  58. Vallon V, Blantz RC, Thomson S. 1995. Homeostatic efficiency of tubuloglomerular feedback is reduced in established diabetes mellitus in rats. Am J Physiol, 269:F876–F883.

    PubMed  CAS  Google Scholar 

  59. Vallon V, Richter K, Blantz RC, Thomson S, Osswald H. 1999. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol, 10:400A (Abstract).

    Google Scholar 

  60. Sugimoto H, Shikata K, Matsuda M, Kushiro M, Hayashi Y, Hiragushi K, Wada J, Makino H. 1998. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy. Diabetologia, 41:1426–1434.

    Article  PubMed  CAS  Google Scholar 

  61. Veelken R, Hilgers KF, Hartner A, Haas A, Bohmer KP, Sterzel RB. 2000. Nitric oxide synthase isoforms and glomerular hyperfiltration in early diabetic nephropathy. J Amer Soc Nephrol, 11:71–79.

    CAS  Google Scholar 

  62. Sugimoto H, Shikata K, Wada J, Horiuchi S, Makino H. 1999. Advanced glycation end products-cytokine-nitric oxide sequence pathway in the development of diabetic nephropathy: aminoguanidine ameliorates the overexpression of tumour necrosis factor-alpha and inducible nitric oxide synthase in diabetic rat glomeruli. Diabetologia, 42:878–886.

    Article  PubMed  CAS  Google Scholar 

  63. De Vriese, R. Tilton, R. Vanholder, N. Lameire. 1999. Hyperfiltration and albummuna in diabetes: role of vascular endothelial growth factor (VEGF). J Am Soc Nephrol, 10: 677A (Abstract).

    Google Scholar 

  64. Kroll J, Waltenberger J. 1999. A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochem Biophys Res Commun, 265: 636–639.

    Article  PubMed  CAS  Google Scholar 

  65. Jensen PK, Steven K, Blaehr H, Christiansen JS, Parving H-H. 1986. Effects of indomethacin on glomerular hemodynamics in experimental diabetes. Kidney Int, 29:490–495.

    Article  PubMed  CAS  Google Scholar 

  66. Mayfield RK, Margolius HS, Levine JH, Wohltmann HJ, Loadholt CB, Colwell JA. 1984. Urinary kallikrein excretion in insulin-dependent diabetes mellitus and its relationship to glycemic control. J Clin Endocrinol Metab 59:278–286.

    Article  PubMed  CAS  Google Scholar 

  67. Jaffa AA, Miller DH, Bailey GS, Chao J, Margolius HS, Mayfield RK. 1987. Abnormal regulation of renal kallikrein in experimental diabetes. Effects of insulin in prokallikrein synthesis and activation. J Clin Invest, 80: 1651–1659.

    Article  PubMed  CAS  Google Scholar 

  68. Campbell DJ, Kelly DJ, Wilkinson-Berka JL, Cooper ME, Skinner SL. 1999. Increased bradykinin and “normal” angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2)27 rats. Kidney Int, 56:211–221

    Article  PubMed  CAS  Google Scholar 

  69. Jaffa AA, Rust PF, Mayfield RK. 1995. Kinin, a mediator of diabetes-induced glomerular hyperfiltration. Diabetes, 44:156–160.

    Article  PubMed  CAS  Google Scholar 

  70. Vora JP, Oyama TT, Thompson MM, Anderson S. 1997. Interactions of the kallikrein-kinin and renin-angiotensin systems in experimental diabetes. Diabetes, 46:107–112.

    Article  PubMed  CAS  Google Scholar 

  71. Komers R, Cooper ME. 1995. Acute renal hemodynamic effects of ACE inhibition in diabetic hyperfiltration: role of kinins. Am J Physiol, 268:F588–F594.

    PubMed  CAS  Google Scholar 

  72. Ballermann BJ, Skorecki KL, Brenner BM. 1984. Reduced glomerular angiotensin II receptor density in early untreated diabetes mellitus in the rat. Am J Physiol, 247:F110–F116.

    PubMed  CAS  Google Scholar 

  73. Wilkes BM, Kaplan R, Mento PF, Aynedjian H Macica CM, Schlondorff D, Bank N. 1992. Reduced glomerular thromboxane receptor sites and vasoconstrictor responses in diabetic rats. Kidney Int, 41:992–999.

    Article  PubMed  CAS  Google Scholar 

  74. Christlieb AR. 1974. Renin, angiotensin and norepinephrine in alloxan diabetes. Diabetes, 23:962–970.

    PubMed  CAS  Google Scholar 

  75. Kennefick TM, Oyama TT, Thompson MM, Vora JP, Anderson S. 1996. Enhanced renal sensitivity to angiotensin actions in diabetes mellitus in the rat. Am J Physiol, 271:F595–F602.

    PubMed  CAS  Google Scholar 

  76. Ohishi K, Okwueze MI, Vari RC, Carmines PK. 1994. Juxtamedullary microvascular dysfunction during the hyperfiltration stage of diabetes mellitus. Am J Physiol, 267:F99–F105.

    PubMed  CAS  Google Scholar 

  77. Anderson S, Rennke H, Brenner BM. 1992. Nifedipine versus fosinopril in uninephrectomized diabetic rats. Kidney Int, 41: 891–897.

    Article  PubMed  CAS  Google Scholar 

  78. Benigni A, Colosio V, Brena C, Bruzzi I, Bertani T, Remuzzi G. 1998. Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes, 47:450–456.

    Article  PubMed  CAS  Google Scholar 

  79. Craven PA, Melhem MF, De Rubertis FR. 1992. Thromboxane in the pathogenesis of glomerular injury in diabetes. Kidney Int, 42:937–946.

    Article  PubMed  CAS  Google Scholar 

  80. Kontessis PS, Jones SL, Barrow SE, Stratton PD, Alessandrini P, De Cosmo S, Ritter JM, Viberti JC. 1993. Effect of thromboxane sythase inhibitor on renal function in diabetic nephropathy. J Lab Clin Med, 121:415–423.

    PubMed  CAS  Google Scholar 

  81. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF, Stramm LE, Feener EP, King GL. 1996. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science, 272:728–731

    Article  PubMed  CAS  Google Scholar 

  82. Carmines PK, Ohishi K, Ikenaga H. 1996. Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus. J Clin Invest, 98:2564–2571.

    Article  PubMed  CAS  Google Scholar 

  83. Goldfarb S, Ziyadeh FN, Kern EFO, Simmons DA. 1991. Effects of polyol-pathway inhibition and dietary myo-inositol on glomerular hemodynamic function in experimental diabetes mellitus in rats. Diabetes, 40:465–471.

    Article  PubMed  CAS  Google Scholar 

  84. Daniels BS, Hostetter TH. 1989. Aldose reductase inhibition and glomerular abnormalities in diabetic rats. Diabetes, 38:981–986.

    Article  PubMed  CAS  Google Scholar 

  85. Anderson S. 1993. Pharmacologic interventions in experimental animals. In Prevention of Progressive Chronic Renal Failure. El Nahas AM, Mallick NP, Anderson S, eds. Oxford: Oxford Univ. Press, 1993.

    Google Scholar 

  86. Kuchan MJ, Frangos JA. 1993. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol, 264:H150–H156.

    PubMed  CAS  Google Scholar 

  87. Buga GM, Gold ME, Fukuto JM, Ignarro LJ. 1991. Shear stress-induced release of nitric oxide from endothelial cells grown on beads. Hypertension, 17:187–193.

    Article  PubMed  CAS  Google Scholar 

  88. Awolesi MA, Sessa WC, Sumpio BE. 1995. Cyclic strain upregulates nitric oxide synthesis in cultured bovine aortic endothelial cells. J Clin Invest, 96:1449–1454.

    Article  PubMed  CAS  Google Scholar 

  89. Ohno M, Cooke JC, Dzau VJ, Gibbons GH. 1995. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium-channel blockade. J Clin Invest, 95:1363–1369.

    Article  PubMed  CAS  Google Scholar 

  90. Nagel T, Resnick N, Atkinson WJ, Dewey CF, Jr, Gimbrone, MA, Jr. 1994. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J Clin Invest, 94:885–891.

    Article  PubMed  CAS  Google Scholar 

  91. Sugimoto H, Shikata K, Hirata K, Akiyama K, Matsuda M, Kushiro M, Hayashi Y, Miyatake N, Miyasaka M, Makino H. 1997. Increased expression of intercellular adhesion molecule-1 (ICAM-1) in dibetic rat glomeruli: glomerular hyperfiltration is a potential mechanism of ICAM-1 upregulation. Diabetes, 46:2075–2081.

    Article  PubMed  CAS  Google Scholar 

  92. Ott MJ, Olson JL, Ballermann BJ. 1995. Chronic in vitro flow promotes ultrastructural differentiation of endothelial cells. Endothelium, 3:21–30.

    Article  Google Scholar 

  93. Malek AM, Gibbons GH, Dzau VJ, Izumo S. 1993. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium. J Clin Invest 92:2013–2021.

    Article  PubMed  CAS  Google Scholar 

  94. Riser BL, Cortes P, Zhao X, Bernstein J, Dumler F, Narins RG. 1992. Intraglomerular pressure and mesangial stretching stimulate extracellular matrix formation in the rat. J Clin Invest, 90:1932–1943.

    Article  PubMed  CAS  Google Scholar 

  95. Becker BN, Yasuda T, Kondo S, Vaikunth S, Homma T, Harris RC. 1994. Mechanical stretch/relaxation stimulates a cellular renin-angiotensin system in cultured rat mesangial cells. Exp Nephrol, 6:57–66

    Article  Google Scholar 

  96. Harris RC, Haralson MA, Badr KF. 1992. Continuous stretch-relaxation in culture alters rat mesangial cell morphology, growth characteristics, and metabolic activity. Lab Invest, 66:548–554.

    PubMed  CAS  Google Scholar 

  97. Riser BL, Cortes P, Heilig C, Grondin J, Ladson-Wofford S, Patterson D, Narins RG. 1996. Cyclic stretching force selectively up-regulates transforming growth factor-ß isoforms in cultured rat mesangial cells. Am J Pathol, 148:1915–1923.

    PubMed  CAS  Google Scholar 

  98. Cortes P, Zhao X, Riser BL, Narins RG. 1997. Role of glomerular mechanical strain m the pathogenesis of diabetic nephropathy. Kidney Int, 51:57–68.

    Article  PubMed  CAS  Google Scholar 

  99. Homma T, Akai Y, Burns KD, Harris RC. 1992. Activation of S6 kinase by repeated cycles of stretching and relaxation in rat glomerular mesangial cells. J Biol Chem, 267:23129–23135.

    PubMed  CAS  Google Scholar 

  100. Yasuda T, Kondo S, Homma T, Harris RC. 1996. Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 98:1991–2000

    Article  PubMed  CAS  Google Scholar 

  101. Harris RC, Akai Y, Yasuda T, Homma T. 1995. The role of physical forces in alterations of mesangial cell function. Kidney Int 45(Suppl 45):S17, 1995.

    Google Scholar 

  102. Wagner CT, Durante W, Christodoulide N, Heliums JD, Schafer AI. 1997. Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells. J Clin Invest, 100:589–596.

    Article  PubMed  CAS  Google Scholar 

  103. Ricardo SD, Ding G, Eufemio M, Diamond JR. 1997. Antioxidant expression in experimental hydronephrosis: role of mechanical stretch and growth factors. Am J Physiol, 272:F789–F798.

    PubMed  CAS  Google Scholar 

  104. Mattana J, Singhal PC. 1995. Applied pressure modulates mesangial cell proliferation and matrix synthesis. Am J Hypertension, 8:1112–1120.

    Article  CAS  Google Scholar 

  105. Anderson S, Rennke HG, Garcia DL, Brenner BM. 1989. Short and long term effects of antihypertensive therapy in the diabetic rat. Kidney Int, 36:526–532.

    Article  PubMed  CAS  Google Scholar 

  106. Anderson S, Rennke HG, Brenner BM. 1992. Nifedipine versus fosinopril in uninephrectomized diabetic rats. Kidney Int, 41:891–897.

    Article  PubMed  CAS  Google Scholar 

  107. Cooper ME, Rumble JR, Allen TJ, et al. 1992. Antihypertensive therapy and experimental diabetic nephropathy. Kidney Int, 41:898–903.

    Article  PubMed  CAS  Google Scholar 

  108. Fujihara C, Padilha RM, Zatz R. 1992. Glomerular abnormalities in long-term experimental diabetes. Diabetes, 41:286–293.

    Article  PubMed  CAS  Google Scholar 

  109. Geiger H, Bahner U, Vaaben W, et al. 1992. Effects of angiotensin-converting enzyme inhibition in diabetic rats with reduced renal function. J Lab Clin Med, 120:861–867.

    PubMed  CAS  Google Scholar 

  110. O’Brien R, Cooper ME, Jerums G, Doyle AE. 1993. The effects of perindopril and triple therapy in a normotensive model of diabetic nephropathy. Diabetes, 42:604–609.

    Article  CAS  Google Scholar 

  111. Brown SA, Walton CL, Crawford P, Bakris GL. 1993. Long-term effects of antihypertensive regimens on renal hemodynamics and proteinuria. Kidney Int, 43:1210–1218.

    Article  PubMed  CAS  Google Scholar 

  112. Anderson S, Jung FF, Ingelfinger JR. 1993. Renal renin-angiotensm system in diabetes functional, immunohistochemical, and molecular biologic correlations. Am J Physiol, 265:F477–F486.

    PubMed  CAS  Google Scholar 

  113. Remuzzi A, Perico N, Amuchastegui CS, Malanchini B, Mazerska M, Battaglia C, Bertani C, Remuzzi G. 1993. Short-and long-term effect of angiotensin II receptor blockade in rats with experimental diabetes. J Am Soc Nephrol, 4:40–49.

    PubMed  CAS  Google Scholar 

  114. Wolf G, Ziyadeh N. 1997. The role of angiotensin II in diabetic nephropathy: emphasis on nonhemodynamic mechanisms. Am J Kidney Dis, 29:153–163.

    Article  PubMed  CAS  Google Scholar 

  115. Kasiske BL, Kalil RSN, Ma JZ, Liao M, Keane WF. 1993. Effect of antihypertensive therapy on the kidney in patients with diabetes: a meta-regression analysis. Ann Intern Med, 118:129–138.

    Article  PubMed  CAS  Google Scholar 

  116. Böhlen L, de Courten M, Weidmann P. 1994. Comparative study of the effect of ACE-inhibitors and other antihypertensive agents on proteinuria in diabetic patients. Am J Hypertension, 7:84S–92S.

    Google Scholar 

  117. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. 1993. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. New Engl J Med, 329:1456–1462.

    Article  PubMed  CAS  Google Scholar 

  118. Nielsen FS, Rossing P, Gall MA, Skott P, Smidt UM, Parving H-H. 1997. Long-term effects of lisinopril and atenolol on kidney function in hypertensive NIDDM subjects with diabetic nephropathy. Diabetes, 46: 1182–1188.

    Article  PubMed  CAS  Google Scholar 

  119. Tarnow L, Rossing P, Jensen C, Parving H-H. 1999. Long-term renoprotective effect of nisoldipine and lisinopril in type 1 diabetic patients with diabetic nephropathy [abstract]. J Am Soc Nephrol, 10:134A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, S., Komers, R. (2000). Pathogenesis of Diabetic Glomerulopathy: The Role of Glomerular Hemodynamic Factors. In: Mogensen, C.E. (eds) The Kidney and Hypertension in Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4499-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4499-9_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7028-4

  • Online ISBN: 978-1-4615-4499-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics