Skip to main content
Book cover

Arc Routing pp 231–275Cite as

Linear Programming Based Methods for Solving Arc Routing Problems

  • Chapter

Abstract

From the pioneering works of Dantzig, Edmonds and others, polyhedral (i.e. linear programming based) methods have been successfully applied to the resolution of many combinatorial optimization problems. See Jünger, Reinelt & Rinaldi (1995) for an excellent survey on this topic. Roughly speaking, the method consists of trying to formulate the problem as a Linear Program and using the existing powerful methods of Linear Programming to solve it.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assad, A.A. & B.L. Golden (1995) Arc routing methods and applications. In M.O. Ball, T.L. Magnanti, C.L. Monma & G.L. Nemhauser (Eds.) Network Routing. Handbooks of Operations Research and Management Science, 8. Amsterdam: North Holland.

    Google Scholar 

  2. Ball, M.O. & M.J. Magazine (1988) Sequencing of insertions in printed circuit board assembly. Operations Research, 36, 192–201.

    Article  MathSciNet  Google Scholar 

  3. Belenguer, J.M. & E. Benavent (1992) Polyhedral Results on the Capacitated Arc Routing Problem. Working Paper, Dept. of Stats and OR, University of Valencia, Spain.

    Google Scholar 

  4. Belenguer, J.M. & E. Benavent (1994) A Branch and Cut algorithm for the Capacitated Arc Routing Problem. Workshop on Algorithmic Approaches to Large and Complex Combinatorial Optimization Problems. Giens, France.

    Google Scholar 

  5. Belenguer, J.M. & E. Benavent (1998a) The capacitated arc routing problem: valid inequalities and facets. Computational Optimization & Applications, 10, 165–187.

    Article  MathSciNet  MATH  Google Scholar 

  6. Belenguer, J.M. & E. Benavent (1998b) A cutting-plane algorithm for the capacitated arc routing problem. Working Paper, Dept. of Stats and OR, University of Valencia, Spain.

    Google Scholar 

  7. Benavent, E., V. Campos, A. Corberán & E. Mota (1992) The Capacitated Arc Routing Problem: lower bounds. Networks, 22, 669–690.

    Article  MathSciNet  MATH  Google Scholar 

  8. CPLEX Optimization Inc., CPLEX, ver. 3.0, 1994.

    Google Scholar 

  9. Christofides, N. (1973) The optimum traversal of a graph. Omega, 1, 719–732.

    Article  Google Scholar 

  10. Christofides, N., E. Benavent, V. Campos, A. Corberán & E. Mota (1984) An optimal method for the mixed postman problem, in P. Thoft-Christensen (Ed.) System Modelling and Optimization, Lecture Notes in Control and Inf. Sciences, 59. Berlin: Springer.

    Google Scholar 

  11. Christofides, N., V. Campos, A. Corberán & E. Mota (1981) An algorithm for the rural postman problem. Report IC.O.R.81.5, Imperial College, London.

    Google Scholar 

  12. Christofides, N., V. Campos, A. Corberán & E. Mota (1986) An algorithm for the rural postman problem on a directed graph. Mathematical Programming Study, 26, 155–166.

    Article  MATH  Google Scholar 

  13. Corberán, A., A. Letchford & J.M. Sanchis (1998) A Cutting Plane Algorithm for the General Routing Problem. Working Paper. Dept. of Stats and OR, University of Valencia, Spain.

    Google Scholar 

  14. Corberán, A., A. Romero & J.M. Sanchis (1999) The General Routing Problem on a Mixed Graph. Working paper, Dept. of Stats and OR, University of Valencia, Spain.

    Google Scholar 

  15. Corberán, A. & J.M. Sanchis (1994) A polyhedral approach to the rural postman problem. European Journal of Operational Research, 19, 95–114.

    Article  Google Scholar 

  16. Corberán, A. & J.M. Sanchis (1998) The general routing problem polyhedron: facets from the RPP and GTSP polyhedra. European Journal of Operational Research, 108, 538–550.

    Article  MATH  Google Scholar 

  17. Cornuéjols, G., J. Fonlupt & D. Naddef (1985) The traveling salesman problem on a graph and some related integer polyhedra. Mathematical Programming, 33, 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  18. Crowder, H.P., E.L. Johnson & M.W. Padberg (1983) Solving Large-Scale Zero-One Linear Programming Problems Operations Research 31, 803–834.

    Article  MATH  Google Scholar 

  19. Dantzig, G.B., D.R. Fulkerson & S. M. Johnson (1954) Solution of a large scale traveling salesman problem Operations Research, 2, 393–410.

    Article  MathSciNet  Google Scholar 

  20. Edmonds, J. (1963) The Chinese postman problem. Operations Research, 13, Suppl. 1, B73–B77.

    MathSciNet  Google Scholar 

  21. Edmonds, J. (1965) Maximum Matching and a Polyhedron with 0,1 Vertices. Journal of Research National Bureau of Standards., 69B, 125–130.

    Article  MathSciNet  Google Scholar 

  22. Edmonds, J. & E.L. Johnson (1973) Matchings, Euler tours and the Chinese postman. Mathematical Programming, 5, 88–124.

    Article  MathSciNet  MATH  Google Scholar 

  23. Eiselt, H.A., M. Gendreau & G. Laporte (1995) Arc-routing problems, part 1: the Chinese postman problem. Operations Research, 43, 231–242.

    Article  MathSciNet  MATH  Google Scholar 

  24. Eiselt, H.A., M. Gendreau & G. Laporte (1995) Arc-routing problems, part 2: the rural postman problem. Operations Research, 43, 399–414.

    Article  MathSciNet  MATH  Google Scholar 

  25. Fischetti, M., J.J. Salazar & P. Toth (1997) A Branch and Cut Algorithm for the Symmetric Generalized Traveling Salesman Problem. Operations Research 45, 378–394.

    Article  MathSciNet  MATH  Google Scholar 

  26. Fleischmann, B. (1985) A cutting-plane procedure for the traveling salesman problem on a road network. European Journal of Operational Research, 21, 307–317.

    Article  MathSciNet  MATH  Google Scholar 

  27. Ford, L.R. & D.R. Fulkerson (1962) Flows in Networks. Princeton University Press, Princeton, NJ.

    MATH  Google Scholar 

  28. Ghiani, G. & G. Laporte (1997) A Branch-and-Cut Algorithm for the Undirected Rural Postman Problem. Centre de Recherche sur les Transports, University of Montreal. Technical Report CRT-97-54 (December 1997).

    Google Scholar 

  29. Golden, B.L. & R.T. Wong (1981) Capacitated arc routing problems. Networks, 11, 305–315.

    Article  MathSciNet  MATH  Google Scholar 

  30. Golden, B.L. J.S. DeArmon & E. Baker (1983) Computational experiments with Algorithms for a class of Routing Problems. Computers and Operations Research 10, 47–59.

    Article  MathSciNet  Google Scholar 

  31. Gomory, R.E. (1958) Outline of an algorithm for integer solutions to linear programs. Bull. Amer. Math. Soc. 64, 275–278.

    Article  MathSciNet  MATH  Google Scholar 

  32. Gomory, R.E. (1963) An algorithm for integer solutions to linear programs. In R.L. Graves and P. Wolfe, eds., Recent Advances in Mathematical Programming, McGraw Hill, New York, 269–302.

    Google Scholar 

  33. Gomory, R.E. & T.C. Hu (1961) Multi-terminal network flows. SIAM Journal on Applied Mathematics., 9, 551–570.

    Article  MathSciNet  MATH  Google Scholar 

  34. Grötschel, M. & O. Holland (1985) Solving matching problems with linear programming. Mathematical Programming, 33, 243–259.

    Article  MathSciNet  MATH  Google Scholar 

  35. Grötschel, M. & O. Holland (1987) A Cutting Plane Algorithm for Minimum Perfect 2-Matchings. Computing, 39, 327–344.

    Article  MathSciNet  MATH  Google Scholar 

  36. Grötschel, M. & M.W. Padberg (1979) On the symmetric traveling salesman problem I: inequalities. Mathematical Programming, 16, 265–280.

    Article  MathSciNet  MATH  Google Scholar 

  37. Grötschel, M. & Z. Win (1988) On the windy postman polyhedron. Report No. 75, Schwerpunkt-progam der Deutschen Forschungsgeneinschaft, Universität Augsburg, Germany.

    Google Scholar 

  38. Grötschel, M. & Z. Win (1992) A cutting plane algorithm for the windy postman problem. Mathematical Programming, 55, 339–358.

    Article  MathSciNet  MATH  Google Scholar 

  39. Guan, M. (1962) Graphic programming using odd or even points. Chinese Mathematics, 1, 237–277.

    Google Scholar 

  40. Guan, M. (1984) On the windy postman problem. Discrete Applied Mathematics, 9, 41–46.

    Article  MathSciNet  MATH  Google Scholar 

  41. Gun, H. (1993) Polyhedral structure and efficient algorithms for certain classes of directed rural postman problem. PhD dissertation, Applied Math. Program, University of Maryland at College Park, Md.

    Google Scholar 

  42. Harche, F. & G. Rinaldi (1991) Vehicle Routing. Private communication.

    Google Scholar 

  43. Hertz, A., G. Laporte & P. Nanchen (1998) Improvement Procedures for the Undirected Rural Postman Problem. Centre de Recherche sur les Transports, University of Montreal. Technical Report CRT-96-30 (revised March 1998).

    Google Scholar 

  44. Jünger, M., G. Reinelt & G. Rinaldi (1995) The traveling salesman problem. In M.O. Ball, T.L. Magnanti, C.L. Monma & G.L. Nemhauser (Eds.) Network Models. Handbooks on Operations Research and Management Science Vol. 7. Amsterdam: Elsevier.

    Google Scholar 

  45. Jünger, M., G. Reinelt & S. Thienel (1994) Provably good solutions for the traveling salesman problem. ZOR — Math. Meth. Oper. Res., 40,183–217.

    Article  MATH  Google Scholar 

  46. Lenstra, J.K. & A.H.G. Rinnooy-Kan (1976) On general routing problems. Networks,6, 273–280.

    Article  MathSciNet  MATH  Google Scholar 

  47. Letchford, A.N. (1997a) New inequalities for the General Routing Problem. European Journal of Operational Research, 96, 317–322.

    Article  MATH  Google Scholar 

  48. Letchford, A.N. (1997b) The General Routing Polyhedron: a unifying framework. Forthcoming in European Journal of Operational Research.

    Google Scholar 

  49. Letchford, A.N. & R.W. Eglese (1998) The rural postman problem with deadline classes. European Journal of Operational Research, 105, 390–400.

    Article  MATH  Google Scholar 

  50. Liebling, T.M. (1970) Graphentheorie in Planungs — und Tourenproblemen. Lecture Notes in Operations Research and Mathematical Systems 21, Springer, Berlin.

    Google Scholar 

  51. Martello, S. & P. Toth (1990) Knapsack Problems: Algorithms and Computer Implementations. John Wiley.

    Google Scholar 

  52. Nobert, Y. & J.C. Picard (1996) An optimal algorithm for the mixed Chinese postman problem. Networks, 27, 95–108.

    Article  MathSciNet  MATH  Google Scholar 

  53. Orloff, C.S. (1974) A fundamental problem in vehicle routing. Networks, 4, 35–64.

    Article  MathSciNet  MATH  Google Scholar 

  54. Padberg, M.W. & M.R. Rao (1982) Odd minimum cut-sets and b-matchings. Mathematics for Operations Research, 7, 67–80.

    Article  MathSciNet  MATH  Google Scholar 

  55. Padberg, M.W. & G. Rinaldi (1987) Optimization of a 532 City Symmetric Traveling Salesman Problem by Branch and Cut. Operations Research Letters, 6, 1–7.

    Google Scholar 

  56. Padberg, M.W. & G. Rinaldi (1990) Facet identification for the symmetric traveling salesman polytope. Mathematical Programming, 47, 219–257.

    Article  MathSciNet  MATH  Google Scholar 

  57. Padberg, M.W. & G. Rinaldi (1991) A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33, 60–100.

    Article  MathSciNet  MATH  Google Scholar 

  58. Papadimitriou, C.H. (1976) On the Complexity of Edge Traversing. J. ACM 23, 544–554.

    Article  MathSciNet  MATH  Google Scholar 

  59. Pearn, W.L. (1989) Approximate solutions for the Capacitated Arc Routing Problem. Computers and Operations Research 16, 589–600.

    Article  MathSciNet  MATH  Google Scholar 

  60. Picard, J.C. & M. Queyranne (1980) On the structure of all minimum cuts in a network and applications. Mathematical Programming, 13, 6–16.

    Google Scholar 

  61. Picard, J.C. & H.D. Ratliff (1975) Minimum cuts and related problems. Networks 5, 357–370.

    Article  MathSciNet  MATH  Google Scholar 

  62. Romero, A. (1997) On Mixed Rural Postman Problem. PhD Dissertation (in Spanish), Dept. of Statistics and OR, University of Valencia, Spain.

    Google Scholar 

  63. Savall, J.V. (1990) Polyhedral results and approximate algorithms for the directed rural postman problem. PhD Dissertation (in Spanish), Dept. of Statistics and OR, University of Valencia, Spain.

    Google Scholar 

  64. Welz, S.A. (1994) Optimal solutions for the capacitated arc routing problem using integer programming. PhD Dissertation, Dept. of QT and OM, University of Cincinnati.

    Google Scholar 

  65. Win, Z. (1987) Contributions to routing problems. Doctoral Dissertation, Universität Augsburg, Germany.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benavent, E., Corberán, A., Sanchis, J.M. (2000). Linear Programming Based Methods for Solving Arc Routing Problems. In: Dror, M. (eds) Arc Routing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4495-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4495-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7026-0

  • Online ISBN: 978-1-4615-4495-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics